المستخلص: |
يعاني نظام التعرف الحالي من مشكلة الأبعاد للميزات المستخرجة التي قد تقلل من نتائج التعرف وتقلل من أداء التعرف من خلال اختيار العديد من الميزات غير الملائمة أو الزائدة عن الحاجة. تقوم هذه الرسالة بتطوير نظام التعرف على النص المكتوب بخط اليد باللغة العربية اعتمادا على مصنف الشبكة العصبية الاصطناعية لمعالجة مشكلة النظام. يتكون النظام المقترح من ثلاث مراحل رئيسية تشمل: استخراج الميزات، اختيار الميزات، والتصنيف. في حين أن الإنجاز الرئيسي لهذا البحث هو تحسين نظام التعرف وإيجاد مجموعة فرعية مثالية من الميزات. تتضمن مرحلة استخراج الميزات مجموعة من الميزات الإحصائية والهيكلية وهي: المتوسط والانحراف المعياري والنمط الثنائي المحلي والميزات الهندسية. في اختيار الميزات، تم اعتماد الطريقة الهجينة لتقليل أبعاد الميزات وتحديد مجموعة فرعية مثالية من الميزات استنادا إلى الخوارزمية الجينية التي تدعمها خوارزمية أقرب الجيران. تمكنت هذه الطريقة من تقليل 72.4 % من الميزات غير المرغوب فيها والحصول على 21 ميزة فعالة. تمت مقارنة الطريقة المقترحة مع طريقة أخرى تعتمد على تحليل المكونات الرئيسية، حيث تبين أن نهج الاختيار من الخوارزمية الجينية وخوارزمية أقرب الجيران أفضل من حيث معدل التعرف وعدد الميزات المحددة. استخدمت مرحلة التصنيف الشبكة العصبية الاصطناعية مصنف للتعرف على النص المكتوب بخط اليد باللغة العربية اعتمادا على مجموعة البيانات IFN/ENIT. يمكن للشبكة العصبية الاصطناعية التعرف على خط اليد العربي بنسبة 94.2 % من معدل الدقة. تتم مقارنة الطريقة المقترحة مع طريقة أخرى تعتمد على تقنية تحليل المكونات الرئيسية. توضح المقارنة أن نهج الاختيار للنظام المقترح أفضل من تقنية تحليل المكونات الرئيسية من حيث معدل التعرف وعدد الميزات المحددة. حصلت هذه التقنية على معدل دقة 92.7 % مع 30 ميزة محددة.
|