ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

Solitons and Other Exact Solutions for Two Nonlinear Pdes in Mathematical Physics Using the Generalized (Gl/G)-Expansion Method

المصدر: مجلة روافد المعرفة
الناشر: جامعة الزيتونة - كلية الآداب والعلوم - ترهونة
المؤلف الرئيسي: Alurr, Khaled A. E. (Author)
مؤلفين آخرين: Dalem, Blied S. (Co-Author) , Arwiniya, A. M. H. (Co-Author) , Almasroub, Ragab M. A. (Co-Author)
المجلد/العدد: ع7
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2020
الشهر: سبتمبر
الصفحات: 116 - 139
DOI: 10.35778/1754-000-007-008
رقم MD: 1263176
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: AraBase
مواضيع:
كلمات المؤلف المفتاحية:
Generalized (G0=G)-Expansion Method | Exact Solutions | Nonlinear Low-Pass Electrical Lines | Pulse Narrowing Nonlinear Transmission Lines
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: In this article, we apply the generalized (G'=G)-expansion method with the aid of com- puter algebra systems (CAS) such as Maple or Mathematic to construct many new types of Jacobi elliptic function solutions for two nonlinear partial differential equations (PDEs) describing the nonlinear low-pass electrical lines and pulse narrowing nonlinear transmission lines. Based on Kirchhoff's law, the given nonlinear PDEs have been derived and can be reduced to nonlinear ordinary differential equations (ODEs) using a simple transformation. Soliton wave solutions or periodic function solutions are obtained from the Jacobi elliptic function solutions when the modulus of the Jacobi elliptic functions approaches to one or zero respectively. Comparing our new results with the well-known results are given. The used method in this article is straightforward, concise and it can also be applied to other nonlinear PDEs in mathematical physics.