ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

Investigating Accounting Fraud Patterns Using Data Mining Techniques

المصدر: مجلة العلوم الإقتصادية والسياسية
الناشر: جامعة بني وليد - كلية الإقتصاد والعلوم السياسية - بني وليد
المؤلف الرئيسي: Khalifa, Husam A. S. (Author)
المجلد/العدد: س10, ع19
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2022
الشهر: مارس
الصفحات: 100 - 110
DOI: 10.35778/1751-010-019-005
رقم MD: 1426220
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Accounting | Data Mining | Euclidian Distance | Financial Fraud | Transactions
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: A data mining technology was utilized to discover fraud trends in accounting dataset that contained fraudulent transactions. The following method was used to achieve the goal: first, inside data, fraudulent transactions were settled according to three fraud patterns; then, using the Rapidminer program, the algorithms, Euclidian distance, and local outlier factors were run. As a result, the deception was exposed. Patterns were shown in a variety of ways depending on the visuals provided by the application. Finally, using the k Means technique allowed for an effective group clustering of the data by Euclidian distance. As a result of the distribution of values, the first and third frauds were discovered. The outlier detection algorithm (LOF) correctly identified the three fraud behaviors caused by isolated outliers in diverse situations.

عناصر مشابهة