ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

Bayesian GLS Identification of Autoregressive Moving Average Models

المصدر: مجلة التجارة والتمويل
الناشر: جامعة طنطا - كلية التجارة
المؤلف الرئيسي: Elsayed, Howaida (Author)
المجلد/العدد: ع4
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2023
الشهر: ديسمبر
الصفحات: 203 - 224
ISSN: 1110-4716
رقم MD: 1451395
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Autoregressive Moving Average Models | Generalized Least Squares "Gls" Approach | Approximate Error | Prior Distribution | Posterior Distribution | Bayesian Identification
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: In this article, a new Bayesian approach is used to identify the autoregressive moving average models. Employing approximation error is the foundation of the suggested Bayesian methodology. We take into consideration presence of an approximation error when substituting lagged errors of the original autoregressive moving average model with suitably lagged residuals from along autoregression . The direct Bayesian identification approach is utilized for solving the Bayesian identification issue of autoregressive moving average processes employing both informative and non-informative priors. The theoretical derivations of the direct Bayesian identification approach are carried out utilizing the aforementioned priors. We compare the effectiveness of the Broemeling and Shaarawy approach with proposed Bayesian approach for determining the orders of autoregressive moving average models by utilizing an actual data set and numerous simulated experiments. The outcomes of simulations and actual data demonstrate that the suggested approach is superior to the Broemeling and Shaarawy approach for determining the orders of autoregressive moving average processes.

ISSN: 1110-4716