ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

A Secured Cognitive Agent Based Multi Strategic Intelligent Search System

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Gulati, Neha (Author)
مؤلفين آخرين: Garg, Atul (Co-Author)
المجلد/العدد: مج30, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2018
الصفحات: 206 - 222
DOI: 10.33948/0584-030-002-007
ISSN: 1319-1578
رقم MD: 974391
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
BDI Model | Cognitive Agent | Emotion | Information Retrieval | Intelligent Search | Search Engine
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Search Engine (SE) is the most preferred information retrieval tool ubiquitously used. In spite of vast scale involvement of users in SE’s, their limited capabilities to understand the user/ searcher context and emotions places high cognitive, perceptual and learning load on the user to maintain the search momentum. In this regard, the present work discusses a Cognitive Agent (CA) based approach to support the user in Web-based search process. The work suggests a frame- work called Secured Cognitive Agent based Multi-strategic Intelligent Search System (CAbMsISS) to assist the user in search process. It helps to reduce the contextual and emotional mismatch between the SE’s and user. After implementation of the proposed framework, performance analysis shows that CAbMsISS framework improves Query Retrieval Time (QRT) and effectiveness for retrieving relevant results as compared to Present Search Engine (PSE). Supplementary to this, it also provides search suggestions when user accesses a resource previously tagged with negative emotions. Overall, the goal of the system is to enhance the search experience for keeping the user motivated. The framework provides suggestions through the search log that tracks the queries searched, resources accessed and emotions experienced during the search. The implemented frame- work also considers user security.

ISSN: 1319-1578

عناصر مشابهة