العنوان بلغة أخرى: |
نحو تطوير نموذج فعال لتصنيف أشعة الدماغ الكهربائية يعتمد على تحويل المويجات المنفصلة |
---|---|
المؤلف الرئيسي: | بلاعو، خيري محمد خليفة (مؤلف) |
مؤلفين آخرين: | القرم، أحمد (مشرف) |
التاريخ الميلادي: |
2018
|
موقع: | الزرقاء |
الصفحات: | 1 - 85 |
رقم MD: | 1026124 |
نوع المحتوى: | رسائل جامعية |
اللغة: | الإنجليزية |
الدرجة العلمية: | رسالة ماجستير |
الجامعة: | جامعة الزرقاء |
الكلية: | كلية الدراسات العليا |
الدولة: | الاردن |
قواعد المعلومات: | Dissertations |
مواضيع: | |
رابط المحتوى: |
المستخلص: |
تم استخدام إشارات الدماغ (EEG) على نطاق واسع لتصنيف العديد من حالات التشخيص وعادة ما يتم البدء بالخطوات الرئيسية لتصنيف EEG من خلال إزالة الضجيج للإشارات، متبوعة باستخراج الميزات، ثم اختيار الميزات المهمة وأخيرا عملية التصنيف في هذا العمل، يقترح نهج جديد قائم على الهجين من عائلة Wavelet والتطور التفاضلي (DE) لتصنيف حالات الصرع علي أساس إشارات EEG. يستخدم تحويل المويجات المنفصلة (DWT) على نطاق واسع في خطوة استخلاص الميزة لأنه فعال جدا في هذا المجال، كما أكدت نتائج الدراسات السابقة. يتم استخدام خطوة تحديد الميزة لتقليل الأبعاد من خلال استبعاد الميزات الضعيفة. تتم هذه الخطوة باستخدام التطور التفاضلي، وأخيرا، استخدمنا في هذه الدراسة خوارزميات التعلم الآلي الخاضع للإشراف وثلاث مقاييس مطابقة لمهمة التصنيف. تقدم هذه الأطروحة نموذجا فعالا لتصنيف EEG من خلال التفكير في استخلاص الميزة واختيارها. يتم استخدام عدة أنواع من DWT لإنتاج مجموعة واسعة من الميزات. بعد ذلك، استخدمنا التطور التفاضلي لاختيار الميزات المناسبة التي تحقق أفضل أداء لتصنيف الإشارات. بالنسبة لخطوة التصنيف، فإننا نستخدم خمسة تقنيات تعلم آلي وتقنيات تعلم تزايدي، ويتم تطبيق نتائج هذا العمل مع قواعد بيانات مختلفة اعتمادا على مقاييس التقييم المختلفة بما في ذلك؛ الدقة والحساسية والخصوصية مع التحقق من الصحة عبر 10 أضعاف. تثبت النتائج فعالية النموذج المقترح بدقة قريبة من 100٪ في معظم النتائج. |
---|