ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Hybrid Technique to Improve Face Recognition Using Principal Component Analysis and Singular Value Decomposition

العنوان بلغة أخرى: تقنية هجينة لتحسين التعرف على الوجه باستخدام تحليل المكونات الرئيسية وتحلل القيمة المفردة
المصدر: مجلة المنصور
الناشر: كلية المنصور الجامعة
المؤلف الرئيسي: عبدالجبار، اسراء عبدالأمير (مؤلف)
المؤلف الرئيسي (الإنجليزية): AbdulJabbar, Israa Abdul Ameer
مؤلفين آخرين: يعكوب، زينب علي (م. مشارك)
المجلد/العدد: ع31
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2019
الصفحات: 1 - 16
DOI: 10.36541/0231-000-031-003
ISSN: 1819-6489
رقم MD: 1030306
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
تمييز الوجه | تحليل العنصر الأساسي | تحلل القيمة المفردة | مسافة منهاتن | Face Recognition | Principal Component Analysis "PCA" | Singular Value Decomposition "SVD" | Manhattan Distance
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: هذا البحث يقوم بتقديم نظرية هجينه بين اثنين من طرق التعرف على الوجوه واحد من أهم طرق تمييز الوجوه الإحصائية المسماة (تحليل العنصر الأساسي) و(تحلل القيمة المفردة) ومحاولة لعرض جميع المعادلات الرياضية المستخدمة في هاتان الطريقتان وإبراز المكان الذي تم فيه التهجين في كلتا الخوارزميتين والتركيز على طريقة المعالجة الرياضية باستخدام الضرب النقطي، لاختبار الطريقة المقترحة تم استخدام صور مجموعة بيانات أورل مع عدد مختلف من الصور لمجموعة التدريب، وعدد مختلف من الوجوه إيجن المختار واستخدامها أيضا عدد غير متباينة لصور الاختبار وتم استخدام مسافة مانهاتن لقياس المسافات بين ناقلات الصور في هذا النظام، فإن النتيجة تبين أن معدل الاعتراف باستعمال هذه التقنية الهجينة أعلى من معدل التعرف باستخدام (تحليل العنصر الأساسي) أو (تحلل القيمة المفردة) بشكل منفصل، وفي كل مرة تزيد قيمة العتبة وزيادة عدد وجوه الايكن المأخوذة يزيد من معدل دقة تمييز الوجوه.

This paper present a hybrid technique between two of the most popular face recognition methods, Principal Component Analysis (PCA) and singular value decomposition (SVD), and attempts to offer a study for all its mathematical equations in detail and concentrate on the hybrid place between equations in order to focus on the way of processing the hybrid method. Dot product used in mathematical equations and for testing the proposed method used Olivetti Research Laboratory (ORL) data set images were used with different number of images for training set and used various number of Eigen faces and used also dissimilar number for test images and Manhattan distance was used to measure the distances between image vectors in this system, the result shows that the recognition rate using this hybrid technique is higher than the recognition rate using PCA or SVD separately and each time increase the threshold value the accuracy rate increased and conclude that when increase the threshold value and the chosen number of Eigen faces then recognition rate increased.

ISSN: 1819-6489

عناصر مشابهة