ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Comparison of Three different Techniques for Object Recognition

المصدر: مجلة العلوم الإنسانية والتطبيقية
الناشر: جامعة المرقب - كلية الآداب والعلوم قصر الأخيار
المؤلف الرئيسي: Almantsri, Ahmed (Author)
مؤلفين آخرين: Sengul, Gokhan (Co-Author) , Alhamrouni, Mohamed (Co-Author)
المجلد/العدد: ع9
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2020
الشهر: يونيو
الصفحات: 223 - 232
رقم MD: 1067260
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Earth Mover's Distance | K-Nearest Neighbors | Support Vector Machine | Object Recognition | KNN | SVM | EMD
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

7

حفظ في:
LEADER 03781nam a22002537a 4500
001 1805628
041 |a eng 
044 |b ليبيا 
100 |9 576895  |a Almantsri, Ahmed  |e Author 
245 |a A Comparison of Three different Techniques for Object Recognition 
260 |b جامعة المرقب - كلية الآداب والعلوم قصر الأخيار  |c 2020  |g يونيو 
300 |a 223 - 232 
336 |a بحوث ومقالات  |b Article 
520 |a يساعد التطور السريع في تطبيقات الحاسوب على تحسين كفاءة تقنيات معالجة الصور مثل التعرف على الأشياء من الوسائط المتعددة. خلال العقود القليلة الماضية، تم تقديم العديد من التقنيات من خلال إشراك المجالات المتعددة التخصصات المعتمدة على علوم الحاسوب كأدوات تصنيف. في هذه الورقة، استخدمنا ثلاث تقنيات مختلفة لتصنيف الصور والتعرف عليها Earth Mover's Distance (EMD), Support Vector Machines (SVM), K-Nearest Neighbors (KNN). تتطلب هذه التقنيات استخراج المميزات المتعلقة بالأشياء، ولهذا الغرض قمناخوارزمية Histogram of oriented gradients (HOG). فيما يتعلق بمجموعات البيانات، فقد استخدامنا مجموعة بيانات COIL-100 كمجموعة بيانات معروفة لتجارب التعرف على الأشياء. قمنا بتقسيم مجموعة البيانات إلى سبع مجموعات فرعية. ثم قمنا باختبار ومقارنة الخوارزميات الثلاثة باستخدام هذه المجموعات الفرعية بشكل فردي. أخيرًا، قارنا النتائج ووجدنا أن SVM وEMD أكثر كفاءة على الرغم من أننا استخدمنا مجموعة فرعية كبيرة بينما يتأثر KNN وتنخفض كفاءته عندما يزداد حجم مجموعة البيانات 
520 |b The rapid change in computer applications helps improving the efficiency of image processing techniques such as object recognition from multimedia. During the last few decades, many techniques were introduced by involving the interdisciplinary fields of computer science as a classification tool. In this paper, we used three different image classifiers techniques K- Nearest Neighbors (KNN), Support Vector Machine (SVM), and Earth Mover's Distance (EMD). These techniques require feature extraction, such as the Histogram of Oriented Gradient (HOG) algorithm. Regarding the datasets, we used COIL-100 dataset as a well-known dataset for Object recognition experiments. We divided the dataset into seven subsets. Then, we tested and compared the three algorithms using these subsets individually. Finally, we compared the results and We found that SVM and EMD are more efficient even though we used a large subset while KNN is affected when the dataset gets larger. 
653 |a علوم الحاسب الآلى  |a تطبيقات الحاسوب  |a تقنيات معالجة الصور  |a الوسائط المتعددة 
692 |b Earth Mover's Distance  |b K-Nearest Neighbors  |b Support Vector Machine  |b Object Recognition  |b KNN  |b SVM  |b EMD 
700 |9 576898  |a Sengul, Gokhan  |e Co-Author 
700 |a Alhamrouni, Mohamed  |e Co-Author  |9 576897 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |c 016  |e Journal of Humanities and Applied Sciences  |l 009  |m ع9  |o 0630  |s مجلة العلوم الإنسانية والتطبيقية  |v 000 
856 |u 0630-000-009-016.pdf 
930 |d y  |p y  |q n 
995 |a HumanIndex 
999 |c 1067260  |d 1067260 

عناصر مشابهة