ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Intelligent Hybrid Approach for Classification Accuracy of Intrusion Detection System

المؤلف الرئيسي: عباس، مصطفى نهاد (مؤلف)
مؤلفين آخرين: Alfayoumi, Mohammad Ahmad (Advisor)
التاريخ الميلادي: 2019
موقع: عمان
الصفحات: 1 - 57
رقم MD: 1097052
نوع المحتوى: رسائل جامعية
اللغة: الإنجليزية
الدرجة العلمية: رسالة ماجستير
الجامعة: جامعة الاسراء الخاصة
الكلية: كلية الدراسات العليا
الدولة: الاردن
قواعد المعلومات: Dissertations
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

17

حفظ في:
LEADER 03331nam a22003137a 4500
001 1524240
041 |a eng 
100 |9 590376  |a عباس، مصطفى نهاد  |e مؤلف 
245 |a Intelligent Hybrid Approach for Classification Accuracy of Intrusion Detection System 
260 |a عمان  |c 2019 
300 |a 1 - 57 
336 |a رسائل جامعية 
502 |b رسالة ماجستير  |c جامعة الاسراء الخاصة  |f كلية الدراسات العليا  |g الاردن  |o 0047 
520 |a Intrusion detection system (I.D.S) is an essential component, which enhances the security of computer systems by actively detecting all forms of attack at the early stages. The main use of IDS is the monitoring of the network traffics and analyzing the behavior of the users in searching for any abnormal activity or attack signature for real time intrusion detection. The main weakness in any IDS is their inability to offer adequate sensitivity and accuracy; coupled with their inability to process enormous data. To address these issues (such as the increasing traffic, huge behavior profiles, large signature databases, and the inability of differentiating normal behaviors from the suspicious ones), several algorithms have been developed. Hence, the main aim of this work is to choose the differentiating features for the development of an optimal machine learning algorithm which can offer high detection rates, fast training, and testing processes offline. The proposed machine learning model contains a feature selection algorithm (wrapper type) which is based on the integration of the Binary Firefly algorithm enhanced for feature selection by crossover operator taking from the genetic algorithm, called (GA-FA) with the Naïve Bayesian Classifier (NBC). The performance of the proposed model was tested on NSL_KDD data sets prepared by the MIT Lincoln Laboratory. The model testing was based on several experiments and different scenarios (the effect of swarm size, number of iterations, and the Swap). For evaluating the ability to select the minimum number of features with the higher value of classification accuracy, the algorithm worked perfectly and selected a comparable number of features. The model achieved the best average accuracy of 97.011%. In conclusion, the proposed feature selection algorithm has the ability to select the most relevant features which enhance the classification accuracy of the network intrusion detection system. 
653 |a تكنولوجيا المعلومات  |a كشف التسلل  |a أمن المعلومات  |a الهجمات الإلكترونية 
700 |9 590377  |a Alfayoumi, Mohammad Ahmad  |e Advisor 
856 |u 9802-021-002-0047-T.pdf  |y صفحة العنوان 
856 |u 9802-021-002-0047-A.pdf  |y المستخلص 
856 |u 9802-021-002-0047-C.pdf  |y قائمة المحتويات 
856 |u 9802-021-002-0047-F.pdf  |y 24 صفحة الأولى 
856 |u 9802-021-002-0047-1.pdf  |y 1 الفصل 
856 |u 9802-021-002-0047-2.pdf  |y 2 الفصل 
856 |u 9802-021-002-0047-3.pdf  |y 3 الفصل 
856 |u 9802-021-002-0047-4.pdf  |y 4 الفصل 
856 |u 9802-021-002-0047-5.pdf  |y 5 الفصل 
856 |u 9802-021-002-0047-R.pdf  |y المصادر والمراجع 
930 |d y 
995 |a Dissertations 
999 |c 1097052  |d 1097052 

عناصر مشابهة