ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Classifying Patients with Myocardial Infarction and Heart Failure by Using SVM and KNN Learning Techniques

العنوان بلغة أخرى: تصنيف مرضى النوبة القلبية وعجز القلب باستخدام تقنيات Support Vector Machine "SVM" وK-Nearest Neighbor Learning "KNN"
المصدر: مجلة الإدارة والاقتصاد
الناشر: الجامعة المستنصرية - كلية الإدارة والاقتصاد
المؤلف الرئيسي: خليل، بديعة رحمن (مؤلف)
مؤلفين آخرين: حيدر، سوزان صابر (م. مشارك) , حسين، محمد محمود فقي (م. مشارك)
المجلد/العدد: ع126
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2020
الشهر: كانون الأول
الصفحات: 315 - 327
DOI: 10.31272/JAE.43.2020.126.24
ISSN: 1813-6729
رقم MD: 1150169
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Cardiovascular Diseases (CVD | Classification | Datasets | Support Vector Machine | K-Nearest Neighbor | Myocardial Infarction | Heart Failure
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 04881nam a2200277 4500
001 1893287
024 |3 10.31272/JAE.43.2020.126.24 
041 |a eng 
044 |b العراق 
100 |9 616560  |a خليل، بديعة رحمن  |e مؤلف 
245 |a Classifying Patients with Myocardial Infarction and Heart Failure by Using SVM and KNN Learning Techniques 
246 |a تصنيف مرضى النوبة القلبية وعجز القلب باستخدام تقنيات Support Vector Machine "SVM" وK-Nearest Neighbor Learning "KNN" 
260 |b الجامعة المستنصرية - كلية الإدارة والاقتصاد  |c 2020  |g كانون الأول 
300 |a 315 - 327 
336 |a بحوث ومقالات  |b Article 
520 |b Cardiovascular diseases (CVD) are considered to be the leading cause of death globally and millions of people from all around the world die annually due to the different types of heart diseases. There are multiple major and minor risk factors that together contribute to developing heart disease. These risk factors include age, sex, tobacco, physical inactivity, genetics etc. Therefore, it’s hard to predict heart disease in patients using conventional methods. On the other hand, however, with the help of technology, it has now become easier to achieve this goal. The process begins by evaluating datasets containing patient’s risk factors. Then, the evaluated datasets would be analyzed using one of the many machine-learning techniques. Finally, the analyzed data would be used as a base for classifying and predicting heart disease in new patients. In this paper, we used two of the most advanced machine learning techniques Support Vector Machine (SVM) technique as well as K-Nearest Neighbor (KNN) to analyze the data that we obtained from 210 patients in Sulaimani Cardiac Hospital between (October 16th, 2019 to January 9th, 2020). In conclusion, we obtained that the SVM yields more accurate results (82.6%) compared to the KNN method (73.0%). 
520 |a تعتبر أمراض القلب والأوعية الدموية في صدارة أسباب الوفيات في جميع أنحاء العالم، ويموت الملايين من الأشخاص في جميع أنحاء العالم سنويا بسبب أنواع مختلفة من أمراض القلب. هناك العديد من عوامل الخطرة الرئيسية والثانوية التي تساهم معا في الإصابة بأمراض القلب فمثلا العمر والجنس والتدخين وقلة النشاط البدني وعلم الوراثة وغيرها. لذلك من الصعب التنبؤ بأمراض القلب لدى المرضى باستخدام الطرق التقليدية. لكن من ناحية أخرى، وباستخدام التكنولوجيات الحديثة، أصبح الآن من السهل تحقيق هذا الهدف، وذلك بتقييم مجموعة من البيانات التي تحتوي على عوامل الخطر لدى المريض. بعد ذلك، ومن ثم تحليل تلك البيانات التي سبق تقييمها باستخدام إحدى تقنيات التعلم الآلي. وأخيرا، سيتم استخدام البيانات التي تم تحليلها كأساس ولتصنيف أمراض القلب والتنبؤ بها للمرضى. وفي هذا البحث، استخدمنا طريقتين من أكثر تقنيات التعلم الآلي تقدما وهما تقنية Support Vector Machine (SVM) بالإضافة إلى K-Nearest Neighbour (KNN) لتحليل البيانات التي تم الحصول عليها من مركز الأمراض القلبية في مستشفى السليمانية لـ 210 مريض للفترة (من 16 أكتوبر 2019 إلى 9 يناير 2020). وقد أظهرت النتائج التي حصلنا عليها بأن تقنية SVM تعطي نتائج أكثر دقة بنسبة (82.6%) مقارنة بطريقة KNN والتي تكون دقة نتائجها بنسبة (73.0%). 
653 |a الأمراض القلبية  |a التعلم الآلي  |a تحليل البيانات  |a مستشفى السليمانية  |a العراق 
692 |b Cardiovascular Diseases (CVD  |b Classification  |b Datasets  |b Support Vector Machine  |b K-Nearest Neighbor  |b Myocardial Infarction  |b Heart Failure 
700 |a حيدر، سوزان صابر  |g Haider, Sozan Saber  |e م. مشارك  |9 574246 
773 |4 الاقتصاد  |4 الإدارة  |6 Economics  |6 Management  |c 024  |e Journal of Administration and Economics  |f Maǧallaẗ al-idāraẗ wa-al-iqtiṣād  |l 126  |m ع126  |o 1148  |s مجلة الإدارة والاقتصاد  |v 000  |x 1813-6729 
700 |a حسين، محمد محمود فقي  |g Hussein, Mohammed Mahmoud Faqi  |e م. مشارك  |9 213177 
856 |u 1148-000-126-024.pdf 
930 |d n  |p y  |q n 
995 |a EcoLink 
999 |c 1150169  |d 1150169 

عناصر مشابهة