LEADER |
01931nam a2200289 4500 |
001 |
1534096 |
041 |
|
|
|a fre
|
100 |
|
|
|9 622321
|a Bouta, Messaouda
|e Author
|
245 |
|
|
|a Systèmes Hamiltoniens Intégrables
|
260 |
|
|
|a ورقلة
|c 2018
|
300 |
|
|
|a 1 - 23
|
336 |
|
|
|a رسائل جامعية
|
502 |
|
|
|b رسالة ماجستير
|c جامعة قاصدي مرباح - ورقلة
|f كلية الرياضيات وعلوم المادة
|g الجزائر
|o 0261
|
520 |
|
|
|a An hamiltonian system is the given of a triple (M, w, H), where (M, w) is a symplectic manifold (of dimension 2n) and H is a smooth function on M. The system is said to be integrable if there exists a n-uplet F = (f1, f2,…, fn) of first integrals in involution whose differentials are generically independent. Arnold-Liouville’s Theorem asserts that if the moment map F is proper and regular then its fibers are tori (a Lagrangian fibration) and there exist action-angle coordinates that linearize the hamiltonian system. We are interested in the construction of Lagrangian fibrations associated with integrable systems and ideas that are behind the Arnold-Liouville theorem and its demonstration.
|
653 |
|
|
|a النظريات الرياضية
|a نظرية المخططات
|a التكاملات الأولية
|a أنظمة هاميلتونية
|
700 |
|
|
|a Bahayou, Mohamed El Amine
|e Advisor
|9 621945
|
856 |
|
|
|u 9815-058-004-0261-T.pdf
|y صفحة العنوان
|
856 |
|
|
|u 9815-058-004-0261-A.pdf
|y المستخلص
|
856 |
|
|
|u 9815-058-004-0261-C.pdf
|y قائمة المحتويات
|
856 |
|
|
|u 9815-058-004-0261-F.pdf
|y 24 صفحة الأولى
|
856 |
|
|
|u 9815-058-004-0261-1.pdf
|y 1 الفصل
|
856 |
|
|
|u 9815-058-004-0261-2.pdf
|y 2 الفصل
|
856 |
|
|
|u 9815-058-004-0261-O.pdf
|y الخاتمة
|
856 |
|
|
|u 9815-058-004-0261-R.pdf
|y المصادر والمراجع
|
930 |
|
|
|d y
|
995 |
|
|
|a Dissertations
|
999 |
|
|
|c 1161490
|d 1161490
|