ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Clustering of Customers Using Electricity Consumption Data for Smart Grid Applications

العنوان بلغة أخرى: تصنيف العملاء على أساس سلوكيات استهلاك الكهرباء لتطبيقات الشبكة الذكية
المؤلف الرئيسي: القشموعية، هند بنت محمد بن حميد (مؤلف)
مؤلفين آخرين: Al-Hamdani, Abdulla (Advisor) , Touzene, Abderrezak (Advisor) , Al-Yahyai, Sultan Salim (Advisor) , Khan, Imran Ali (Advisor)
التاريخ الميلادي: 2021
موقع: مسقط
الصفحات: 1 - 73
رقم MD: 1184977
نوع المحتوى: رسائل جامعية
اللغة: الإنجليزية
الدرجة العلمية: رسالة ماجستير
الجامعة: جامعة السلطان قابوس
الكلية: كلية العلوم
الدولة: عمان
قواعد المعلومات: Dissertations
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

27

حفظ في:
LEADER 05866nam a2200385 4500
001 1536236
041 |a eng 
100 |9 634079  |a القشموعية، هند بنت محمد بن حميد  |e مؤلف 
245 |a Clustering of Customers Using Electricity Consumption Data for Smart Grid Applications 
246 |a تصنيف العملاء على أساس سلوكيات استهلاك الكهرباء لتطبيقات الشبكة الذكية 
260 |a مسقط  |c 2021 
300 |a 1 - 73 
336 |a رسائل جامعية 
502 |b رسالة ماجستير  |c جامعة السلطان قابوس  |f كلية العلوم  |g عمان  |o 0686 
520 |a في الآونة الأخيرة، سمحت الإنجازات التكنولوجية وعلوم البيانات الجديدة بالنمو السريع للبيانات واسعة النطاق. أحد الأمثلة النموذجية على ذلك هو بيانات تدفق الشبكة الذكية التي تنتجها عدادات الطاقة الذكية الصناعية. تعتبر قياسات تسلسل استهلاك الكهرباء المأخوذة في فترات زمنية محددة بمثابة بيانات الحمل التعريفية للصناعة، والتي تمثل ملف الحمل التعريفي للصناعة في فترة معينة. تستخدم مصفوفة البيانات لتمثيل مجموعة من ملفات الحمل التعريفية حيث يتم تمثيل تسلسل قياسات الصناعة في صف واحد ويمثل كل عمود مجموعة من القياسات التي تمت معالجتها خلال فترة زمنية معينة من جميع الصناعات. يحتوي هذا النوع من بيانات استهلاك الطاقة مع الصناعية على عدد كبير من المميزات غير ذات الصلة (العمود) نظرا لنوع مختلف من العوامل، على سبيل المثال فترات الاستراحة، الظروف الجوية وأوامر الإنتاج وما إلى ذلك. يعتبر إنتاج تصنيفات ذات معنى باستخدام هذه المصفوفة عدد كبير من الميزات غير ذات الصلة من المهام الصعبة. يتوفر عدد قليل فقط من خوارزميات اختيار المميزات لبيانات التدفق غير المراقبة. بالإضافة إلى ذلك، يختلف سلوك تدفقات البيانات الصناعية عن تدفق البيانات الأخرى، مثل السلاسل الزمنية للبورصة. في هذا العمل، نعالج هذه المشكلة لتحديد العمليات التجارية المفيدة جدا لتطبيقات الشبكة الذكية المختلفة. تم اقتراح تقنية جديدة لاختيار الميزات ولإزالة المميزات غير ذات الصلة من مصفوفة البيانات. يتم تحديد الكثافات المحلية في مناطق خاصة مختلفة (مميزات فردية) للبيانات. يتم حساب الكثافات المحلية، وتضاف أيضا كثافات المناطق الزمنية حيث تكون المناطق الزمنية هي مجموعة المميزات التالية. في هذه المرحلة، يلعب إيجاد قيمة حدية للكثافات المكتملة دورا مهما لتحسين دقة طريقة تصنيف المميزات. استخدمنا طريقة متقدمة لإيجاد القيمة الحدية وهي مبدأ الحد الأدنى لطول الوصف المتقدم. يتم تصنيف الكثافات المحلية إلى مجموعتين، واحدة لتمثيل الكثافة بقيم عالية، بينما يمثل الصفر الكثافة ذات القيمة الأقل. يتم تمثيل فئات الكثافة للصناعات في فترات زمنية مميزة باستخدام مصفوفة ثنائية. بعد ذلك، يتم حساب تشابه متجهات الكثافة بين كل فترتين زمنيتين متتاليتين من المصفوفة الثنائية باستخدام فرضية تشابه جديدة، وتتم إزالة السمات غير ذات الصلة المحددة لمتجهات الكثافة من بيانات الملف التعريفي للحمل. أخيرا، يتم حساب العدد الإجمالي للمجموعات باستخدام تصوير البيانات، وتجميع البيانات التي تمت تصفيتها باستخدام الخوارزمية التصنيفية لإنتاج التصنيفات الصناعية، حيث يمثل كل جزء نمطا واحدا لاستهلاك الكهرباء. 
653 |a الذكاء الاصطناعي  |a الشبكات الذكية  |a العمليات التجارية  |a الطاقة الكهربائية 
700 |9 634088  |a Al-Hamdani, Abdulla   |e Advisor 
700 |9 568979  |a Touzene, Abderrezak  |e Advisor 
700 |9 524252  |a Al-Yahyai, Sultan Salim  |e Advisor 
700 |a Khan, Imran Ali  |e Advisor  |9 525381 
856 |u 9809-008-007-0686-T.pdf  |y صفحة العنوان 
856 |u 9809-008-007-0686-A.pdf  |y المستخلص 
856 |u 9809-008-007-0686-C.pdf  |y قائمة المحتويات 
856 |u 9809-008-007-0686-F.pdf  |y 24 صفحة الأولى 
856 |u 9809-008-007-0686-1.pdf  |y 1 الفصل 
856 |u 9809-008-007-0686-2.pdf  |y 2 الفصل 
856 |u 9809-008-007-0686-3.pdf  |y 3 الفصل 
856 |u 9809-008-007-0686-4.pdf  |y 4 الفصل 
856 |u 9809-008-007-0686-5.pdf  |y 5 الفصل 
856 |u 9809-008-007-0686-6.pdf  |y 6 الفصل 
856 |u 9809-008-007-0686-R.pdf  |y المصادر والمراجع 
856 |u 9809-008-007-0686-S.pdf  |y الملاحق 
930 |d y 
995 |a Dissertations 
999 |c 1184977  |d 1184977 

عناصر مشابهة