ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Using Neural Network for Recognition Handwritten Indian Numbers

المصدر: مجلة ميسان للدراسات الأكاديمية
الناشر: جامعة ميسان - كلية التربية الأساسية
المؤلف الرئيسي: Majeed, Murtadha Ali (Author)
مؤلفين آخرين: Srayyih, Mohsin Najm (Co-Author)
المجلد/العدد: مج17, ع33
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2018
الشهر: حزيران
الصفحات: 233 - 242
DOI: 10.54633/2333-017-033-012
ISSN: 1994-697X
رقم MD: 1197994
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: HumanIndex, EduSearch
مواضيع:
كلمات المؤلف المفتاحية:
Digital Recognition | Neural Network | Classification
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

2

حفظ في:
LEADER 02527nam a22002537a 4500
001 1944144
024 |3 10.54633/2333-017-033-012 
041 |a eng 
044 |b العراق 
100 |9 641107  |a Majeed, Murtadha Ali  |e Author 
245 |a Using Neural Network for Recognition Handwritten Indian Numbers 
260 |b جامعة ميسان - كلية التربية الأساسية  |c 2018  |g حزيران 
300 |a 233 - 242 
336 |a بحوث ومقالات  |b Article 
520 |b Although not trivial progress has been made in image recognition but it is considered is one of the most critical field of machine learning because of some limitations of what kind of algorithms or methods used for processing. In this work, a powerful algorithm is proposed for image classification. Many robust and efficient models are proposed to increase classification performance and diminish drawbacks inherited from other models. This paper proposes a technique for recognizing Indian numbers using Neural Networks (NN). The main objective for our study was to recognize Indian numbers which have been used in wide applications such as recognizing numbers in car plates or checks in banks. Our models are test and evaluated using not easy and challenging datasets which we created according for some procedures explained in next our sections. Datasets used in this evaluation consists of Indian digit numbers which consist of around 30 thousand samples. In addition to using advanced technique and challenging dataset, a contemporary and efficient methods widely and formerly used are incorporated in our work to expand model efficiency. To the best of our knowledge, comparing with prior work, our models outperform all other former models although all the proposed models are evaluated using challenging dataset created and pre processed for the first time in this work. 
653 |a الأرقام الهندية  |a الكتابة اليدوية  |a التعرف الرقمي  |a الشبكات العصبية 
692 |b Digital Recognition  |b Neural Network  |b Classification 
700 |9 641108  |a Srayyih, Mohsin Najm  |e Co-Author 
773 |4 التربية والتعليم  |6 Education & Educational Research  |c 012  |e Maisan Journal of Academic Studies  |f Maǧallaẗ Mīsān li-l-dirāsāt al-akādīmiyyaẗ  |l 033  |m مج17, ع33  |o 2333  |s مجلة ميسان للدراسات الأكاديمية  |v 017  |x 1994-697X 
856 |u 2333-017-033-012.pdf 
930 |d y  |p y  |q y 
995 |a HumanIndex 
995 |a EduSearch 
999 |c 1197994  |d 1197994 

عناصر مشابهة