ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Utilisation de L’approche Inla-Spde pour L’estimation d’un Modele Spatiale pour la Mortalite par Cancer du Poumon en Algerie (2016)

العنوان بلغة أخرى: Using Inla/Spde Approach for Estimating a Spatial Model for Lung Cancer Mortality in Algeria 2016
المصدر: مجلة الاقتصاد التطبيقي والإحصاء
الناشر: المدرسة الوطنية العليا للإحصاء والاقتصاد التطبيقي
المؤلف الرئيسي: Asri, Ayoub (Author)
مؤلفين آخرين: Benamirouche, Rachid (Co-Author)
المجلد/العدد: مج18, ع1
محكمة: نعم
الدولة: الجزائر
التاريخ الميلادي: 2021
الشهر: يونيو
الصفحات: 261 - 277
ISSN: 1112-234x
رقم MD: 1198949
نوع المحتوى: بحوث ومقالات
اللغة: الفرنسية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Bayesian Modeling | Spatial Modeling | Lung Cancer Mortality | INLA-SPDE Approach | Hierarchical Models
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Recently, Bayesian methods have developed greatly in the field of public health. the advances of Markov Chain Monte Carlo methods (MCMC has permitted Bayesian modelling to the be vastly used by the research community. However, MCMC requiers a huge amount of computational power especially with large datasets. Now, Gaussian random fields have become increasingly useful in public health applications that are characterized with a spatial/spatio-temporal structure which is needed to be included when inferencing models. An efficient alternative to MCMC has been developed using random fields. The Integrated Nested Laplace Approximation (INLA) combined with SPDE can provide a solution to large scale problems in the mentioned field. In this paper we review the INLA approach and present an application on Lung Cancer mortality in Algeria using first an Areal model then combing both approaches to fit a Geostatistical SPDE model.

Récemment, les méthodes bayésiennes se sont considérablement développées dans le domaine de la santé publique. Les progrès des méthodes Markov Chain Monte Carlo (MCMC a permis à la modélisation bayésienne d'être largement utilisée par la communauté de recherche. Cependant, MCMC nécessite une énorme puissance de calcul, en particulier avec de grands ensembles de données. Désormais, les champs aléatoires gaussiens sont devenus de plus en plus utiles dans les applications de santé publique qui sont caractérisées par une structure spatiale / spatio-temporelle qui doit être incluse lors de l'inférence des modèles. Une alternative efficace à MCMC a été développée en utilisant des champs aléatoires. L'approximation intégrée de Laplace (INLA) combinée avec SPDE peut fournir une solution aux problèmes à grande échelle dans le domaine mentionné. Dans cet article, nous passons en revue l'approche INLA et présentons une application sur la mortalité par cancer du poumon en Algérie en utilisant d'abord un modèle territorial puis en combinant les deux approches pour estimer un modèle SPDE géostatistique.

ISSN: 1112-234x