ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Solution of Non-Linear Equations Using Bisection Method by New Technical Method

المصدر: المجلة العربية للعلوم التربوية والنفسية
الناشر: المؤسسة العربية للتربية والعلوم والآداب
المؤلف الرئيسي: Osman, Subhi Abdalazim Aljily (Author)
مؤلفين آخرين: Abdel-Rahman, Abdel Radi Abdel-Rahman Abdel-Gadir (Co-Author) , Ali, Abualez Alamin Ahmed (Co-Author) , Mohammed, Adam Osman Ali (Co-Author)
المجلد/العدد: ع26
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2022
الشهر: فبراير
الصفحات: 261 - 274
DOI: 10.21608/JASEP.2022.216291
ISSN: 2537-0464
رقم MD: 1215665
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch
مواضيع:
كلمات المؤلف المفتاحية:
Solution | Non-Linear Equations | Bisection Method | New Technical Method
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02976nam a22002657a 4500
001 1962823
024 |3 10.21608/JASEP.2022.216291 
041 |a eng 
044 |b مصر 
100 |9 649929  |a Osman, Subhi Abdalazim Aljily  |e Author 
245 |a Solution of Non-Linear Equations Using Bisection Method by New Technical Method 
260 |b المؤسسة العربية للتربية والعلوم والآداب  |c 2022  |g فبراير 
300 |a 261 - 274 
336 |a بحوث ومقالات  |b Article 
520 |b Numerical approximation of the root-finding problem its important tool for process involves finding a root, or solution of nonlinear equation of the form f (x) = 0, for a given function f. A root of this equation is also called a zero of the function f. When we implementing the method on a computer we need to consider the effects of round-off error. For example the computation of the midpoint of the interval [an, bn] should be found from the equation. The Bisection method is used to determine to any specified accuracy that your computer will permit a solution to f (x) = 0 on an interval [a, b], provided that f is continuous on the interval and that f (a) and f (b) are of opposite sign. Although the method will work for the case when more than one root is contained in the interval [a, b], we assume for simplicity of our discussion that the root in this interval is unique, the method stops if one of the midpoints happens to coincide with the root. It also stops when the length of the search interval is less than some prescribed tolerance. The having method is characterized by the fact that it always includes convergence of the individual islands. It is also characterized by the case of calculating errors, but one of its disadvantages is that it is slow to converge to reach the solution. To compare with the a new technical method of the solution . We followed applied numerical method using a new technical method in computer and we found that the new technical method of solution is much faster and more accurate. 
653 |a المعادلات الخطية  |a الإحصاء التطبيقي  |a التحليل العددي  |a الخوارزميات الرياضية 
692 |b Solution  |b Non-Linear Equations  |b Bisection Method  |b New Technical Method 
700 |a Abdel-Rahman, Abdel Radi Abdel-Rahman Abdel-Gadir  |e Co-Author  |9 462392 
700 |9 649932  |a Ali, Abualez Alamin Ahmed  |e Co-Author 
700 |9 649931  |a Mohammed, Adam Osman Ali  |e Co-Author 
773 |4 التربية والتعليم  |6 Education & Educational Research  |c 012  |e The Arab Journal of Educational and Psychological Sciences  |f Al-Mağallaẗ al-ʿarabiyyaẗ li-l-ʿulūm al-tarbawiyaẗ wa al-nafsiyaẗ  |l 026  |m ع26  |o 1803  |s المجلة العربية للعلوم التربوية والنفسية  |v 000  |x 2537-0464 
856 |u 1803-000-026-012.pdf  |n https://jasep.journals.ekb.eg/article_216291.html 
930 |d y  |p y  |q n 
995 |a EduSearch 
999 |c 1215665  |d 1215665 

عناصر مشابهة