ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Classifying Texts of Twitter Data Using a Modified Fuzzy Logic Method

العنوان بلغة أخرى: تصنيف نصوص بيانات تويتر باستخدام طريقة منطقية ضبابية معدلة
المصدر: مجلة المنصور
الناشر: كلية المنصور الجامعة
المؤلف الرئيسي: علي، يسري حسين (مؤلف)
المؤلف الرئيسي (الإنجليزية): Ali, Yossra Hussain
مؤلفين آخرين: عبدالجليل، محمد (م. مشارك) , إبراهيم، نهى جميل (م. مشارك)
المجلد/العدد: ع34
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2020
الصفحات: 76 - 93
DOI: 10.36541/0231-000-034-009
ISSN: 1819-6489
رقم MD: 1239059
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
وسائل التواصل الإجتماعي | تصنيف النص المنطق الضبابي | Social Media | Text Classification | Fuzzy Logic
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 04773nam a22002777a 4500
001 1988366
024 |3 10.36541/0231-000-034-009 
041 |a eng 
044 |b العراق 
100 |9 558342  |a علي، يسري حسين  |e مؤلف  |g Ali, Yossra Hussain 
245 |a Classifying Texts of Twitter Data Using a Modified Fuzzy Logic Method 
246 |a تصنيف نصوص بيانات تويتر باستخدام طريقة منطقية ضبابية معدلة 
260 |b كلية المنصور الجامعة  |c 2020 
300 |a 76 - 93 
336 |a بحوث ومقالات  |b Article 
520 |a تقدم وسائل التواصل الاجتماعي معلومات وفيرة لدراسة سلوكيات الناس وأفكارهم وآرائهم حول ما يدور في العالم مثل الأمور السياسية والاقتصادية والكوارث الطبيعية وغيرها. من المهم دراسة وتحليل العلاقة بين الأحداث التي تؤثر على الإنسان ووسائل التواصل الاجتماعي. تستخدم هذه الدراسة بيانات تويتر المرتبطة بأعصار ساندي لتصنيف النص. وبما أن النصوص التي يتم جمعها تحتوي على بيانات مختلفة لأحداث مختلفة، نحتاج إلى تصنيف البيانات التي لها علاقة بإعصار ساندي. في هذا العمل أستخدمنا طريقة محسنة يستند إلى المنطق الضبابي لحل مشكلة تصنيف النص. المدخلات لهذا النظام هي مجموعة من الميزات التي يتم استخلاصها من كل تغريده. الناتج هو مدى ارتباط كل رسالة إلى ساندي. يتم تصميم مجموعة من القواعد غير الواضحة ويتم الجمع بين طرق مختلفة للتشخيص من أجل الحصول على نتائج التصنيف المطلوبة. نحن نقوم بمقارنة النتائج المستخلصة مع دراسة سابقة استخدمت المنطق الضبابي لتصنيف رسائل تويتر المتعلقة بأعصار ساندي ونقارن بين نتائجها ونتائج طريقة البحث عن الكلمات الرئيسية المعروفة من حيث معدل التصحيح والكمية. تظهر النتيجة أن هذه الطريقة المحسنة هي أكثر ملائمة لتصنيف رسائل تويتر من طريقة الكلمات الرئيسية والنهج القائم على المنطق الضبابي.  |b Social media are a modern web-based application for communication between humans. People share their interests and activities with these Applications. Twitter is a social media site, where people communicate through tweets. People publish their tweets on their profile and send their followers to express their thoughts and opinions about events in this world. In this research, a modified fuzzy logic method to disband text classification problem. The Inputs for this classification system are a set of features extracted from a tweet and the output of this system is a decision of classification for a tweet, which is a degree of correlation for each tweet to an appointed event where the degree of relevance to the desired event if it irrelevant or relevant. The results compared with the keyword search method and the previous fuzzy logic based method based on terms of correction rate and incremental rate. In the incremental rate, the proposed system is able to extract tweets more than a previous fuzzy logic based method, where in dataset 1 the number of the tweets that extracted by the proposed system is 154 tweets but the number of the tweets that extracted by the other one are 98 and 141. The correction rate of the proposed system is (98.7) but the correction rates of these methods are (97.9) and (95.7). 
653 |a وسائل الإتصالات  |a مواقع التواصل الإجتماعي  |a بيانات تويتر  |a المنطقة الضبابية المعدلة 
692 |a وسائل التواصل الإجتماعي  |a تصنيف النص المنطق الضبابي  |b Social Media  |b Text Classification  |b Fuzzy Logic 
700 |a عبدالجليل، محمد  |g Jaleel, Mohammed A  |e م. مشارك  |9 628939 
700 |a إبراهيم، نهى جميل  |g Ibrahim, Nuha J  |e م. مشارك  |9 661880 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |c 009  |e Al Mansour Journal  |f Maǧallaẗ al-manṣūr  |l 034  |m ع34  |o 0231  |s مجلة المنصور  |v 000  |x 1819-6489 
856 |u 0231-000-034-009.pdf 
930 |d n  |p y  |q n 
995 |a EcoLink 
995 |a HumanIndex 
999 |c 1239059  |d 1239059 

عناصر مشابهة