ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Integration of Radar Sat-2 and Landsat Etm+ Images for Mineral Exploration in the Central Part of Libya

المصدر: المجلة الجامعة
الناشر: جامعة الزاوية - مركز البحوث والدراسات العليا
المؤلف الرئيسي: Abulghasem, Younes Ajal (Author)
المجلد/العدد: مج19, ع3
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2017
الشهر: يوليو
الصفحات: 1 - 16
رقم MD: 1263989
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch, EcoLink, IslamicInfo, AraBase, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Landsat ETM+ | Radar Sat-2 | Intensity-Hue-Saturation | Supervised Classification | Iron Ore
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: The area of study located in the central part of Libya is situated at a potential iron ore mineralization zone. In order to identify the alteration zones and mineralization characteristics of the intrusions, iron ore deposit is a belt of upper-Devonian sedimentary formation including iron ore bearing layers, which extend over about 160 km, in ENE-WSW direction, on the northern border of the Murzuk Basin. This study examines the integration of Radar Sat-2 and Landsat ETM+ images to discover any probable extensions of iron ore deposits. Landsat ETM+ images proved to be useful in surface mapping of lithologic and structural features in that area. Radar Sat-2 images reveal fluvial features beneath a surface cover of the desert sand. These features are not observable in Landsat ETM+ images of similar resolution. In this work, the Supervised Classification, Principal Component Analysis (PCA), band, and Intensity-Hue-Saturation techniques is used for merging Radar Sat_2 and Landsat TM images to enhance the interpretation of geological features. The data fusion produced a new data set of images showing enhanced subsurface structures such as foliation, faults and folds that control the distribution of the Banded Iron Formation and placer deposits in Quaternary paleodrainages in the study district. The study demonstrates the utility of merging optical and radar remote sensing data for exploring mineral deposits in arid regions.