ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Recognition of Malaria Parasites Using Images of Red Blood Cells

المصدر: مجلة بحوث جامعة تعز - سلسلة الآداب والعلوم الإنسانية والتطبيقية
الناشر: جامعة تعز
المؤلف الرئيسي: Al-Nahary, Mukhtar Abdullah (Author)
المجلد/العدد: ع30
محكمة: نعم
الدولة: اليمن
التاريخ الميلادي: 2022
الشهر: مارس
الصفحات: 54 - 62
رقم MD: 1277221
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch, AraBase, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Convolutional Neural Network | Microscopic Diagnosis | Rapid Diagnostic Test | Deep Learning
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02400nam a22002417a 4500
001 2032157
041 |a eng 
044 |b اليمن 
100 |9 679485  |a Al-Nahary, Mukhtar Abdullah  |e Author 
245 |a Recognition of Malaria Parasites Using Images of Red Blood Cells 
260 |b جامعة تعز  |c 2022  |g مارس 
300 |a 54 - 62 
336 |a بحوث ومقالات  |b Article 
520 |b Malaria is a serious disease in the world and may lead to death if not treated. It is an infection caused by a single- celled parasite that penetrates the bloodstream through the bite of mosquitoes. Malaria is diagnosed in several ways, including direct detection by a doctor and microscopic diagnosis by examining blood smears from red blood cells infected with parasites, in addition to the rapid diagnostic test, and these methods are ineffective because of the difference the accuracy of the diagnosis and also its low results in the diagnosis, so it was necessary to use modern technologies to recognize malaria effectively. In this paper, malaria was recognized by classifying images of infected and uninfected blood cells using the fine-tuning a pre-trained Convolutional Neural Network as a model for artificial intelligence. The results of the proposed model were compared with the method of microscopy and rapid diagnosis, and the experimental results showed that the proposed model for the identification of malaria diseases achieved high accuracy and efficiency in terms of performance measures: Accuracy, Sensitivity, Specificity, Precision, F1 score, and Matthews correlation coefficient, where the results were (98.30%, 96.99%, 97.75%, 97.73%, 97.36%, and 94.75%) respectively. 
653 |a الطب الحيوي  |a طفيليات الملاريا  |a الفحص المجهري  |a اليمن 
692 |b Convolutional Neural Network  |b Microscopic Diagnosis  |b Rapid Diagnostic Test  |b Deep Learning 
773 |4 الادب  |4 العلوم الاجتماعية ، متعددة التخصصات  |6 Literature  |6 Social Sciences, Interdisciplinary  |c 004  |e University of Taiz Research Journal - Arts and Humanities  |l 030  |m ع30  |o 0931  |s مجلة بحوث جامعة تعز - سلسلة الآداب والعلوم الإنسانية والتطبيقية  |v 000 
856 |u 0931-000-030-004.pdf 
930 |d n  |p y  |q n 
995 |a EduSearch 
995 |a AraBase 
995 |a HumanIndex 
999 |c 1277221  |d 1277221