ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

Predicting Stock Closing Prices Using Artificial Neural Networks for a Sample of Banks Listed in the Iraqi Stock Exchange

المصدر: مجلة القادسية للعلوم الإدارية والاقتصادية
الناشر: جامعة القادسية - كلية الادارة والاقتصاد
المؤلف الرئيسي: Rahi, Salim Sallal (Author)
مؤلفين آخرين: Malik, Laith Haleem (Co-Author)
المجلد/العدد: مج24, ع3
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2022
الصفحات: 731 - 746
ISSN: 1816-9171
رقم MD: 1338866
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
ANN | ISX | Backpropagation | MLP | Prediction | BMNS | BIBI
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: The research aims to construct a predictive model based on the artificial neural network to predict the stock closing price for rationalizing investment decisions. Stock prices are highly volatile, which makes it difficult to predict using traditional methods. Therefore, an applied study has been conducted for two Iraq Stock exchange-listed banks, which are Al-Mansour bank (BMNS) and Investment bank (BIBI), on the basis of daily indices for the period from (2/1/2019) to (28/2/2019). MLP neural network was used in this study to model stock prices using SPSS v26 software. The model was evaluated using a set of metrics, which are MSE, RMSE, MAPE, MAE, and R2. The results proved neural networks' accuracy in predicting stock prices, and thus their dependability in making investment decisions. The researcher recommended conducting more studies in the future.

ISSN: 1816-9171