ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Statistical Techniques for Big Data Analytics in Iot-Enabled Green Supply Chain Management: A Survey

المصدر: المجلة العربية للقياس والتقويم
الناشر: الجمعية العربية للقياس والتقويم
المؤلف الرئيسي: Saleha, Wafaa A. (Author)
مؤلفين آخرين: Abdelkaderb, Sherine M. (Co-Author) , Rashada, Heba (Co-Author) , Abdelgawada, Amal (Co-Author)
المجلد/العدد: مج4, ع7
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2023
الشهر: يناير
الصفحات: 336 - 357
ISSN: 2682-2016
رقم MD: 1354299
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch
مواضيع:
كلمات المؤلف المفتاحية:
Statistical Techniques | Big Data Analytics | Internet of Things | Green Supply Chain Management
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

37

حفظ في:
LEADER 02951nam a22002537a 4500
001 2108803
041 |a eng 
044 |b مصر 
100 |9 718059  |a Saleha, Wafaa A.  |e Author 
245 |a Statistical Techniques for Big Data Analytics in Iot-Enabled Green Supply Chain Management:  |b A Survey 
260 |b الجمعية العربية للقياس والتقويم  |c 2023  |g يناير 
300 |a 336 - 357 
336 |a بحوث ومقالات  |b Article 
520 |b In the manufacturing operation, intelligent Supply Chain Management systems CMS) can improve the quality of products, reduce cost, and accelerate the decision making process. The incorporation of environmentally sustainable processes into MS minimizes the overall environmental impact which is the target of Green Supply Chain Management (GSCM). The intelligence of the GSCM systems makes the usiness smarter. For this reason, it is always a concern to utilize cutting-edge ideas and technologies to optimize the operation of these systems. Internet of Things (IoT) is a promising Information technological (IT) concept that allows environmental objects to communicate with each other automatically and without human intervention. IoT is one of the most important IT solutions that provides intelligence and sustainability to GSCM systems. The significant feature of IoT is the huge volumes of data, called „big data‟ generated by the IoT sensors, installed on the different entities of the chain. To this end, big data processing in real time is a need for decision makers to preserve their companies‟ competitive advantage. There are many big data analytics techniques in the literature to target this issue. Our work will focus on surveying the statistical techniques that can be used in the analysis of big data generated from the IoT sensors situated on the different parts of GSCM to improve its performance, flexibility, productivity, and optimization of its resources through the effective analysis of the large amounts of raw data involved in IoT enabled GSCM, We will also uncover the best tools that can be used for this purpose. 
653 |a البيانات الضخمة  |a التقنيات الإحصائية  |a إنترنت الأشياء  |a الميزة التنافسية 
692 |b Statistical Techniques  |b Big Data Analytics  |b Internet of Things  |b Green Supply Chain Management 
700 |9 718060  |a Abdelkaderb, Sherine M.  |e Co-Author 
700 |9 718063  |a Rashada, Heba  |e Co-Author 
700 |9 718065  |a Abdelgawada, Amal  |e Co-Author 
773 |4 العلوم الاجتماعية ، متعددة التخصصات  |6 Social Sciences, Interdisciplinary  |c 013  |e Arab Journal of Measurement and Evaluation  |f Al-Mağallah Al-ʿArabiyyaẗ Lil-Qiyās wa Al-Taqwīm  |l 007  |m مج4, ع7  |o 1068  |s المجلة العربية للقياس والتقويم  |v 004  |x 2682-2016 
856 |u 1068-004-007-013.pdf 
930 |d y  |p y  |q n 
995 |a EduSearch 
999 |c 1354299  |d 1354299