المستخلص: |
In this paper, feed forward neural network (FFNN) was used to investigate the causal relationship between disaggregated petroleum consumption and economic growth in Egypt. Petroleum consumption will be disaggregated into six main fuel types: Natural gas Gasoline, Fuel Oil, Gas Oil, Kerosene and LPG (Liquefied Petroleum Gas). Standard multilayered, feed-forward, back-propagation neural networks were designed using Microsoft Excel (MS Excel). The results of this study indicated that FFNN showed significant results in dealing with the data. Also FFNN model is capable and can be used for predicting the causal relationship between petroleum consumption and economic growth in Egypt. For natural gas model MSE in training set =0.000738 and in testing set MSE=0.005636. For gasoline model MSE in training set =0.000437 and for testing set MSE=0.008352. For gas oil model MSE in training set =0.00071 and in testing set MSE=0.005675. For fuel oil model MSE in training set =0.000807 and in testing set MSE=0.008753. For Kerosene model MSE in training set =0.00091 and in testing set MSE=0.004312. Finally, for LPG model MSE in training set =0.000649 and for testing set MSE=0.00664, which indicate very high accuracy of the predicted models.
|