ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Developed Prediction Approach for Small Datasets

المصدر: مجلة الدراسات المستدامة
الناشر: الجمعية العلمية للدراسات التربوية المستدامة
المؤلف الرئيسي: Salman, Nuha Ahmed (Author)
مؤلفين آخرين: Hasson, Saad Talib (Co-Author)
المجلد/العدد: مج5, ملحق
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2023
التاريخ الهجري: 1445
الشهر: أغسطس
الصفحات: 759 - 774
ISSN: 2663-2284
رقم MD: 1399909
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch
مواضيع:
كلمات المؤلف المفتاحية:
Small Dataset | Prediction | Machine Learning | Attributes | Correlation
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

1

حفظ في:
المستخلص: Using small datasets is a very challenging task. Developed approaches are significant to make accurate predictions, rankings and identify relevant attributes with a reliable model. Small dataset may lead to biased or incomplete models. Analyzing and prediction with small datasets is usually more difficult due to the restricted number of data. Identifying the relationships between the small dataset’s attributes, specific attributes may have a greater chance of ranking than others due to their insufficient availability. Machine learning has a flexibility and possibility to explain different prospects for health investigation when dealing with small datasets. This paper will analyze the difficulties in making predictions from small datasets and look at several strategies and algorithms that may be applied to reduce these difficulties and increase prediction accuracy

ISSN: 2663-2284

عناصر مشابهة