المصدر: | مجلة كلية التربية الأساسية |
---|---|
الناشر: | الجامعة المستنصرية - كلية التربية الأساسية |
المؤلف الرئيسي: | Salim, Ayat T. (Author) |
مؤلفين آخرين: | Khammas, Ban Mohammed (Co-Author) |
المجلد/العدد: | ع119 |
محكمة: | نعم |
الدولة: |
العراق |
التاريخ الميلادي: |
2023
|
الشهر: | حزيران |
الصفحات: | 22 - 49 |
ISSN: |
8536-2706 |
رقم MD: | 1414031 |
نوع المحتوى: | بحوث ومقالات |
اللغة: | الإنجليزية |
قواعد المعلومات: | EduSearch |
مواضيع: | |
كلمات المؤلف المفتاحية: |
IoT Protocols | IoT Security | Machine Learning | Deep Learning | Intrusion Detection System | Cyber-Attacks
|
رابط المحتوى: |
الناشر لهذه المادة لم يسمح بإتاحتها. |
المستخلص: |
Wearable technology, sensor networks, and home utilities are just a few of the businesses where the Internet of Things (IoT) is spreading quickly. With the development of the IoT, billions of gadgets are now connected to the internet and exchanging data. The proliferation of IoT devices has increased the number of IoT based cyberattacks. In 2016 a massive denial of service (DDOS) cyber-attack was lunched utilizing infected internet of things devices a major website including Netflix and CNN was shutdown. Therefore, new ways for recognizing threats posed by hacked IoT nodes must be developed to overcome this concern. In that same context, ML and DL approaches are the best appropriate investigative control solution against IoT device-based intrusions. The point of the study is to offer a complete grasp of the IoT system-relevant technologies, standards, architecture, and the increasing dangers from corrupted IoT gadgets and an introduction to intrusion detection systems. Additionally, this research focuses on deep learning-based solutions for identifying IoT devices susceptible to cyber-attacks. The detection rate provided by deep learning algorithms shows promising results which reached 99% detection accuracy in some cases. |
---|---|
ISSN: |
8536-2706 |