ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Revealing Sign Language for Individuals who are Deaf and Mute through the Utilization of Neural Networks

المصدر: مجلة جامعة البيضاء
الناشر: جامعة البيضاء
المؤلف الرئيسي: Dabwan, Basel A. (Author)
مؤلفين آخرين: Jadhav, Mukti E. (Co-Author) , Janrao, Prachi (Co-Author)
المجلد/العدد: مج5, ع5
محكمة: نعم
الدولة: اليمن
التاريخ الميلادي: 2023
الشهر: ديسمبر
الصفحات: 401 - 407
ISSN: 2709-9695
رقم MD: 1456024
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Machine Learning | Sign Language | Random Forest | Neural Network | Logistic Regression Deaf and Dumb | Decision Tree
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02753nam a22002537a 4500
001 2201340
041 |a eng 
044 |b اليمن 
100 |9 771442  |a Dabwan, Basel A.  |e Author 
245 |a Revealing Sign Language for Individuals who are Deaf and Mute through the Utilization of Neural Networks 
260 |b جامعة البيضاء  |c 2023  |g ديسمبر 
300 |a 401 - 407 
336 |a بحوث ومقالات  |b Article 
520 |b Living without effective communication poses significant challenges for humans. Individuals employ various methods to convey and share their thoughts and ideas between the sender and receiver. Two of the most prevalent means of communication are verbal speech, which relies on auditory perception, and non-verbal communication through gestures involving bodily movements such as hand gestures and facial expressions. Sign language, specifically categorized as a gestural language, is a unique form of communication that relies on visual perception for understanding and expression. While many individuals incorporate gestures into their communication, for deaf individuals, sign language is often their primary and essential means of communication. Individuals who are deaf and dumb rely on communication to interact with others, gain knowledge, and engage in their surroundings. Sign language serves as a crucial link that reduces the distance between them and the broader society. In order to enhance this communication, we've created models with the ability to identify sign language gestures and translate them into conventional text. Through the training of these models on a dataset employing neural networks, remarkable outcomes have been attained. This technology enables individuals, without prior knowledge of sign language, to understand the intentions and messages of individuals with disabilities, fostering greater inclusivity and accessibility in our society. Three algorithms were used to achieve this work and the findings show very good outcomes, i.e. Random Forest at 98%, Logistic Regression at 99%, and Decision Tree at 91%. 
653 |a ذوي الاحتياجات الخاصة  |a الشبكات العصبية  |a لغة الإشارة  |a الصم والبكم 
692 |b Machine Learning  |b Sign Language  |b Random Forest  |b Neural Network  |b Logistic Regression Deaf and Dumb  |b Decision Tree 
700 |9 771443  |a Jadhav, Mukti E.  |e Co-Author 
700 |9 771446  |a Janrao, Prachi  |e Co-Author 
773 |c 026  |e AlBayda University Journal  |f Mağallaẗ ğāmiʿaẗ al-Bayḍāʾ li-l-buḥūṯ  |l 005  |m مج5, ع5  |o 2422  |s مجلة جامعة البيضاء  |v 005  |x 2709-9695 
856 |u 2422-005-005-026.pdf 
930 |d y  |p y  |q n 
995 |a EduSearch 
995 |a HumanIndex 
999 |c 1456024  |d 1456024 

عناصر مشابهة