LEADER |
02176nam a22002177a 4500 |
001 |
2267916 |
041 |
|
|
|a eng
|
044 |
|
|
|b السعودية
|
100 |
|
|
|9 808530
|a Almulhim, Ahlam
|e Author
|
245 |
|
|
|a Perfect Roman and Perfect Italian Domination of Cartesian Product Graphs
|
260 |
|
|
|b جامعة الملك فيصل
|c 2024
|m 1445
|
300 |
|
|
|a 63 - 68
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b For a graph G = (V, E), a function f: V → {0,1,2} is a perfect Roman dominating function (PRDF) on G if every υ ∈ V with f (υ) = 0 is adjacent to exactly one vertex u with f (u) = 2. The sum Συ∈v (υ) is the weight w (f) of k. The perfect Roman domination number (G) of G is least positive integer k such that there is a PRDF f on G with w (f) ≤ k. A function f: v → {0,1,2} is a perfect Italian dominating function (PIDF) on G if for every υ ∈ V with f (υ) = 0, Σu∈N (u) = 2. The sum Συ∈v (υ) is the weight w (f). The perfect Italian domination number (G) of G is least positive integer K such that there is a PIDF f on G with w (f) ≤ k. Perfect Roman domination and perfect Italian domination are variants of Roman domination, which was originally introduced as a defensive strategy of the Roman Empire. In this article, we prove that the perfect Roman domination and perfect Italian domination problems for Cartesian product graphs are NP-complete. We also give an upper bound for (G), where G is the Cartesian product of paths and cycles.
|
653 |
|
|
|a الإحصاء الرياضي
|a الرسوم البيانية
|a الضرب الديكارتي
|a الإمبراطورية الرومانية
|
692 |
|
|
|b Graph Domination
|b Graph Operations
|b Graph Theory
|b Np-Completeness
|b Problem Complexity
|b Simple Graphs
|
773 |
|
|
|c 011
|e Scientific Journal of King Faisal University - Basic and Applied Sciences
|f almajalat aleilmiat lijamieat almalik fysl. aleulum al'asasiat waltatbiqia
|l 002
|m مج25, ع2
|o 0184
|s المجلة العلمية لجامعة الملك فيصل - العلوم الأساسية والتطبيقية
|v 025
|x 1658-0311
|
856 |
|
|
|u 0184-025-002-011.pdf
|
930 |
|
|
|d y
|p y
|q n
|
995 |
|
|
|a science
|
999 |
|
|
|c 1524453
|d 1524453
|