ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Missing Data in Regression Analysis: A Review

المصدر: مجلة القادسية للعلوم الإدارية والاقتصادية
الناشر: جامعة القادسية - كلية الادارة والاقتصاد
المؤلف الرئيسي: Hussein, Shreen Ali (Author)
مؤلفين آخرين: Hamza, Saad Kadem (Co-Author)
المجلد/العدد: مج26, ع2
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2024
الصفحات: 219 - 228
ISSN: 1816-9171
رقم MD: 1526752
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Missing Data | The Regression Models | Mcar | Mar | Mnar | Handling Missing Data
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: The problem of missing data is a major obstacle for researchers in the process of data analysis in various fields, and this problem appears frequently in all fields of social, medical, astronomical studies, clinical trials, and others. The presence of such a problem within the data to be studied will negatively affect its analysis and then lead to misleading conclusions, and these conclusions result from the great bias caused by this problem. Therefore, this work provides a comprehensive analysis of the different methods used to solve the problem of missing data in databases. It identifies the different types of missing data and points out the most common types of regression analysis. It also aims to introduce the reader to many methods for solving the problem of missing data in regression analysis, while explaining how these methods affect the final conclusions of the study.

ISSN: 1816-9171

عناصر مشابهة