ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Bayesian Reciprocal Adaptive Bridge Composite Quantile Regression with Ordinal Data

المصدر: مجلة القادسية للعلوم الإدارية والاقتصادية
الناشر: جامعة القادسية - كلية الادارة والاقتصاد
المؤلف الرئيسي: Alhamzawi, Rahim (Author)
مؤلفين آخرين: Al-Saadi, Zahraa Yusif Abbas (Co-Author)
المجلد/العدد: مج25, ع4
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2023
الصفحات: 267 - 275
ISSN: 1816-9171
رقم MD: 1526818
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Reciprocal Adaptive Bridge | Composite Quantile Regression | Gibbs Sampler | Ordinal Data
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02656nam a22002297a 4500
001 2270027
041 |a eng 
044 |b العراق 
100 |a Alhamzawi, Rahim  |e Author  |9 809990 
245 |a Bayesian Reciprocal Adaptive Bridge Composite Quantile Regression with Ordinal Data 
260 |b جامعة القادسية - كلية الادارة والاقتصاد  |c 2023 
300 |a 267 - 275 
336 |a بحوث ومقالات  |b Article 
520 |b Selecting active variables for a QR model is difficult. Selecting the right group of predictors often improves prediction accuracy. To improve scientific understanding, choose a smaller subset. Several methods have been presented to find the active subset. Estimating model parameters aims to find the best estimators for accurate predictions. Estimating all the parameters in the high-dimensional data request yields a weak prediction with large correlations between independent variables, resulting in incorrect findings. Variable selection (V.S) is a key challenge in modelling high-dimensional data. Linear QR selection variables and estimation are studied using the Bayesian hierarchical approach. Regularization bridge and ordinal composite quantile regression are our specialities. This work proposes a Bayesian reciprocal adaptive bridge composite quantile regression for ordinal variable selection and estimation. A new Gibbs sampling approach is developed for comprehensive conditional posterior distributions. We look at how Bayesian reciprocal adaptive bridge composite quantile regression for ordinal data (BrABCQRO) stacks up against other Bayesian and non-Bayesian approaches. The posterior, prior, and conditional distributions are all talked about together. For full conditional posterior distributions, a new Gibbs sampling method is created. A real-world example and many simulation examples show that the suggested methods often work better than standard ones. 
653 |a التحليل الإحصائي  |a الإحصاء التطبيقي  |a الانحدار الكمي 
692 |b Reciprocal Adaptive Bridge  |b Composite Quantile Regression  |b Gibbs Sampler  |b Ordinal Data 
700 |9 710220  |a Al-Saadi, Zahraa Yusif Abbas  |e Co-Author 
773 |4 الاقتصاد  |4 إدارة الأعمال  |6 Economics  |6 Business  |c 025  |e Al-Qadisiyah Journal for Administrative & Economic Sciences  |f Maǧallaẗ al-qādisiyyaẗ li-l-ʻulūm al-idāriyyaẗ wa-al-iqtiṣādiyyaẗ  |l 004  |m مج25, ع4  |o 0478  |s مجلة القادسية للعلوم الإدارية والاقتصادية  |v 025  |x 1816-9171 
856 |u 0478-025-004-025.pdf 
930 |d n  |p y  |q n 
995 |a EcoLink 
999 |c 1526818  |d 1526818 

عناصر مشابهة