ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Optimizing Quality Control: A Comprehensive Analysis of Computer Vision Methods for Assessing Vegetables and Fruits

المصدر: مجلة جامعة بنغازي العلمية
الناشر: جامعة بنغازي
المؤلف الرئيسي: Khamees, Zahow Muftah (Author)
مؤلفين آخرين: Abdusalam, Abdusalam Aboubaker (Co-Author)
المجلد/العدد: س37, ع2
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2024
الشهر: ديسمبر
الصفحات: 101 - 114
ISSN: 2790-1629
رقم MD: 1538497
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Computer Vision | Classification Mechanisms | Fruits | Image Processing | Quality Assessment | Vegetables
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Efficient quality control in the agriculture sector, particularly regarding the inspection of vegetables and fruits, stands as a critical necessity in today's health-focused industry. Conventional fruit grading methods, ill-suited for large-scale production, demand an automated, non-invasive, and economically feasible substitute. Computer vision emerges as a promising avenue, leveraging image analysis and machine learning algorithms to evaluate the quality of produce. The convergence of computer vision and image processing technologies in contemporary agriculture has brought about a substantial transformation in quality assessment methodologies. This paper conducts an in-depth exploration of the amalgamation of computer vision and image processing techniques for the evaluation of agricultural produce quality. Through a comprehensive review, this scientific analysis investigates the integration of computer vision and image processing techniques in agricultural quality assessment. It scrutinizes key studies, their practical implementations, outcomes, and the research voids they reveal. Technological progressions within the agricultural domain have the potential to amplify productivity and curtail the circulation of flawed or substandard products. Moreover, this study deliberates on the forthcoming trends in computer vision technology applications, accentuating their prospective influence on the vegetables and fruits industry.

ISSN: 2790-1629

عناصر مشابهة