LEADER |
01881nam a22002297a 4500 |
001 |
2283649 |
041 |
|
|
|a eng
|
044 |
|
|
|b سوريا
|
100 |
|
|
|9 817349
|a Mousa, Tawfik Ezat
|e Author
|
245 |
|
|
|a A Hybrid Deep Learning Model for Breast Cancer Mammographic Image Classification Based on Transfer Learning and an Attention Module
|
260 |
|
|
|b جامعة الزيتونة الدولية
|c 2024
|g أغسطس
|
300 |
|
|
|a 1 - 10
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b Breast cancer is one of the primary causes of death among women. Early detection of breast cancer allows for the receipt of appropriate treatment, thus increasing the possibility of survival. In this paper, we proposed a hybrid deep learning model using a pre-trained VGG16 model with a self-attention mechanism for breast cancer detection. We extract features from the binary class (benign, malignant) dataset of the mammographic image analysis society (MIAS) using pre-trained deep convolutional neural network (CNN) architectures like Xception, MobileNet, DenseNet, and VGG-16. So the results illustrated that the best model is VGG16 with a self-attention module, which achieved an accuracy of 98.77%.
|
653 |
|
|
|a سرطان الثدي
|a الأشعة السينية
|a التصوير الإشعاعي
|a الوقاية والعلاج
|a الرعاية الصحية
|
692 |
|
|
|b Breast Cancer
|b VGG16
|b MIAS
|b Mammography
|b Classification
|
700 |
|
|
|9 817352
|a Geoda, Mohamed S.
|e Co-Author
|
773 |
|
|
|4 العلوم الاجتماعية ، متعددة التخصصات
|6 Social Sciences, Interdisciplinary
|c 001
|e Al-Zaytoonah University International Journal
|f Mağallaẗ ğāmiʿaẗ al-Zaytūnaẗ al-duwaliyyaẗ
|l 025
|m ع25
|o 2455
|s مجلة جامعة الزيتونة الدولية
|v 000
|x 2958-8537
|
856 |
|
|
|u 2455-000-025-001.pdf
|
930 |
|
|
|d y
|p y
|q n
|
995 |
|
|
|a EduSearch
|
999 |
|
|
|c 1540533
|d 1540533
|