ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

A COMPARATIVE STUDY BETWEEN COMBINING METHODS OF NEURAL NETWORK AND LOGISTIC REGRESSION FOR CLASSIFICATION

المصدر: مجلة البحوث التجارية
الناشر: جامعة الزقازيق - كلية التجارة
المؤلف الرئيسي: Takia, Al Biomy Awad Awad (Author)
المجلد/العدد: مج30, ع2
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2008
الشهر: يوليو
الصفحات: 3 - 25
رقم MD: 665248
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

20

حفظ في:
المستخلص: This study compares alternative techniques of combining individual classifiers in classification. We applied Extracorporeal Shack Wave Lithotripsy (ESWL), where the renal stone represents the most important disorders which affect the Urinary tract. Logistic Regression is used as one of the individual classifier technique and then we used Neural Networks as anther individual classifier technique and then applied both combination using Neural Networks and combination using Product Rule where they are used in applied the Nested Combined technique. The sample of study consists of patients were treated at Urology and Nephrology Center-Mansoura University between March 1997 and March 2007 and its number was 2850 patients. Results show that Nested Combined technique is more efficient than both two usual techniques in combining.