ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Designing of The Main Operations of Genetic Algorithms For Production Scheduling

المصدر: مجلة جامعة الزيتونة
الناشر: جامعة الزيتونة
المؤلف الرئيسي: Elzway, Solimin (Author)
المؤلف الرئيسي (الإنجليزية): Elzway, Soliman
المجلد/العدد: ع9
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2014
الشهر: صيف
الصفحات: 22 - 32
DOI: 10.35778/1742-000-009-031
ISSN: 2523-1006
رقم MD: 839889
نوع المحتوى: بحوث ومقالات
قواعد المعلومات: EcoLink, IslamicInfo, HumanIndex, EduSearch
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

8

حفظ في:
LEADER 02548nam a22002417a 4500
001 1596062
024 |3 10.35778/1742-000-009-031 
044 |b ليبيا 
100 |9 451399  |a Elzway, Solimin  |e Author  |g Elzway, Soliman 
245 |a Designing of The Main Operations of Genetic Algorithms For Production Scheduling 
260 |b جامعة الزيتونة  |c 2014  |g صيف 
300 |a 22 - 32 
336 |a بحوث ومقالات 
520 |b This article presents general formulation of flexible job scheduling problem (FJSP) in industrial production. It describes genetic algorithm AGHAR that involves specific of technical-organizational questions in investigated production problem. It precisely represents chromosome structure and procedure of machines reservation. It also describes mutation and crossing operations and shows examples of its realizations. Genetic algorithm was worked out for serial and serial-parallel cases of parts flow. Its efficiency was compared to Szez heuristic algorithm. Our computational tests showed that this algorithm can improve solution of the FJSP. \ Evolutionary algorithm as a simulation of genetic process is not a random searching for solution of a problem. Although genetic algorithms use stochastic processes, their applications give generally better results than random. Obtained results of experimental analysis show that met heuristic methods, like genetic algorithms, are effective tool for solving problems very difficult from algorithmic point of view. It confirms that practical use of these methods is now one of the most effective ways of control in a real complex industrial processes. Popular methods for solving such type of problems presently are neural networks, tabu search algorithm, simulated annealing and genetic algorithms considered here. Efficiency of genetic algorithms is generally estimated by many criterions, like time of result return or quality of result. 
653 |a الخوارزميات الوراثية  |a الإنتاج الصناعي 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |4 العلوم الاجتماعية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |6 Social Sciences, Interdisciplinary  |c 031  |e Azzaytuna University Journal  |f Mağallaẗ ğāmiʿaẗ al-Zaytūnaẗ  |l 009  |m ع9  |o 1742  |s مجلة جامعة الزيتونة  |v 000  |x 2523-1006 
856 |u 1742-000-009-031.pdf 
930 |d y  |p y 
995 |a EcoLink 
995 |a IslamicInfo 
995 |a HumanIndex 
995 |a EduSearch 
999 |c 839889  |d 839889 

عناصر مشابهة