ارسل ملاحظاتك

ارسل ملاحظاتك لنا







An Adaptive Meta Search Engine Considering The User’s Field Of Interest

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Hassanpour, Hamid (Author)
مؤلفين آخرين: Zahmatkesh, Farzaneh (Co-Author)
المجلد/العدد: مج24, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2012
الصفحات: 71 - 81
DOI: 10.33948/0584-024-001-008
ISSN: 1319-1578
رقم MD: 972057
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Clustering | Meta Search Engine | Ranking | Search Relevance | Social Information
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02067nam a22002417a 4500
001 1715098
024 |3 10.33948/0584-024-001-008 
041 |a eng 
044 |b السعودية 
100 |9 523897  |a Hassanpour, Hamid  |e Author 
245 |a An Adaptive Meta Search Engine Considering The User’s Field Of Interest 
260 |b جامعة الملك سعود  |c 2012 
300 |a 71 - 81 
336 |a بحوث ومقالات  |b Article 
520 |b Existing meta-search engines return web search results based on the page relevancy to the query, their popularity and content. It is necessary to provide a meta-search engine capable of ranking results considering the user’s field of interest. Social networks can be useful to find the users’ tendencies, favorites, skills, and interests. In this paper we propose MSE, a meta-search engine for document retrieval utilizing social information of the user. In this approach, each user is assumed to have a profile containing his fields of interest. MSE extracts main phrases from the title and short description of receiving results from underlying search engines. Then it clusters the main phrases by a Self-Organizing Map neural network. Generated clusters are then ranked on the basis of the user' s field of interest. We have compared the proposed MSE against two other meta search engines. The experimental results show the efficiency and effectiveness of the proposed method. 
653 |a تكنولوجيا المعلومات  |a محركات البحث  |a الشبكات العصبية 
692 |b Clustering  |b Meta Search Engine  |b Ranking  |b Search Relevance  |b Social Information 
700 |9 523898  |a Zahmatkesh, Farzaneh  |e Co-Author 
773 |c 008  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج24, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 024  |x 1319-1578 
856 |u 0584-024-001-008.pdf 
930 |d y  |p y 
995 |a science 
999 |c 972057  |d 972057 

عناصر مشابهة