ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Application Of Data Mining: Diabetes Health Care In Young And Old Patients

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Aljumah, Abdullah A. (Author)
مؤلفين آخرين: Ahamad, Mohammed Gulam (Co-Author) , Siddiqui, Mohammad Khubeb (Co-Author)
المجلد/العدد: مج25, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2013
الصفحات: 127 - 136
DOI: 10.33948/0584-025-002-002
ISSN: 1319-1578
رقم MD: 972903
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Data Mining | Oracle Data Mining Tool | Prediction | Regression | Support Vector Machine | Diabetes Treatment
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: This research concentrates upon predictive analysis of diabetic treatment using a regression- based data mining technique. The Oracle Data Miner (ODM) was employed as a software mining tool for predicting modes of treating diabetes. The support vector machine algorithm was used for experimental analysis. Datasets of Non Communicable Diseases (NCD) risk factors in Saudi Arabia were obtained from the World Health Organization (WHO) and used for analysis. The dataset was studied and analyzed to identify effectiveness of different treatment types for different age groups. The five age groups are consolidated into two age groups, denoted as p (y) and p(o) for the young and old age groups, respectively. Preferential orders of treatment were investigated. We conclude that drug treatment for patients in the young age group can be delayed to avoid side effects. In contrast, patients in the old age group should be prescribed drug treatment immediately, along with other treatments, because there are no other alternatives available.

ISSN: 1319-1578