ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Global Best Harmony Search With A New Pitch Adjustment Designed For Nurse Rostering

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Awadallah, Mohammed A. (Author)
مؤلفين آخرين: Khader, Ahamad Tajudin (Co-Author) , Al-Betar, Mohammed Azmi (Co-Author) , Bolaji, Asaju La’aro (Co-Author)
المجلد/العدد: مج25, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2013
الصفحات: 145 - 162
DOI: 10.33948/0584-025-002-004
ISSN: 1319-1578
رقم MD: 972925
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Nurse Rostering | Harmony Search | Approximation Method | Population Based | Global Best
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: In this paper, the Harmony Search Algorithm (HSA) is proposed to tackle the Nurse Rostering Problem (NRP) using a dataset introduced in the First International Nurse Rostering Competition (INRC2010). NRP is a combinatorial optimization problem that is tackled by assigning a set of nurses with different skills and contracts to different types of shifts, over a predefined scheduling period. HSA is an approximation method which mimics the improvisation process that has been successfully applied for a wide range of optimization problems. It improvises the new harmony iteratively using three operators: memory consideration, random consideration, and pitch adjustment. Recently, HSA has been used for NRP, with promising results. This paper has made two major improvements to HSA for NRP: (i) replacing random selection with the Global-best selection of Particle Swarm Optimization in memory consideration operator to improve convergence speed. (ii) Establishing multi-pitch adjustment procedures to improve local exploitation. The result obtained by HSA is comparable with those produced by the five INRC 2010 winners’ methods.

ISSN: 1319-1578

عناصر مشابهة