ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Forecasting Of Currency Exchange Rates Using An Adaptive ARMA Model With Differential Evolution Based Training

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Rout, Minakhi (Author)
مؤلفين آخرين: Panda, Ganapati (Co-Author) , Majhi, Ritanjali (Co-Author) , Majhi, Babita (Co-Author)
المجلد/العدد: مج26, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2014
الصفحات: 7 - 18
DOI: 10.33948/0584-026-001-002
ISSN: 1319-1578
رقم MD: 972997
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Exchange Rate Forecasting | Adaptive Auto Regressive Moving Average (ARMA) Model | Forward Backward LMS | Particle Swarm Optimization (PSO) | Differential Evolution (DE) | Cat Swarm Optimization (CSO) | Bacterial Foraging Optimization (BFO)
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02939nam a22002657a 4500
001 1715892
024 |3 10.33948/0584-026-001-002 
041 |a eng 
044 |b السعودية 
100 |9 524568  |a Rout, Minakhi  |e Author 
245 |a Forecasting Of Currency Exchange Rates Using An Adaptive ARMA Model With Differential Evolution Based Training 
260 |b جامعة الملك سعود  |c 2014 
300 |a 7 - 18 
336 |a بحوث ومقالات  |b Article 
520 |b To alleviate the limitations of statistical based methods of forecasting of exchange rates, soft and evolutionary computing based techniques have been introduced in the literature. To further the research in this direction this paper proposes a simple but promising hybrid prediction model by suitably combining an adaptive autoregressive moving average (ARMA) architecture and differential evolution (DE) based training of its feed forward and feed-back parameters. Simple statistical features are extracted for each exchange rate using a sliding window of past data and are employed as input to the prediction model for training its internal coefficients using DE optimization strategy. The prediction efficiency is validated using past exchange rates not used for training purpose. Simulation results using real life data are presented for three different exchange rates for one–fifteen months’ ahead predictions. The results of the developed model are compared with other four competitive methods such as ARMA-particle swarm optimization (PSO), ARMA-cat swarm optimization (CSO), ARMA-bacterial foraging optimization (BFO) and ARMA-forward backward least mean square (FBLMS). The derivative based ARMA-FBLMS forecasting model exhibits worst prediction performance of the exchange rates. Comparisons of different performance measures including the training time of the all three evolutionary computing based models demonstrate that the proposed ARMA-DE exchange rate prediction model possesses superior short and long range prediction potentiality compared to others. 
653 |a الأساليب الإحصائية  |a أسعار الصرف  |a التغذية الراجعة 
692 |b Exchange Rate Forecasting  |b Adaptive Auto Regressive Moving Average (ARMA) Model  |b Forward Backward LMS  |b Particle Swarm Optimization (PSO)  |b Differential Evolution (DE)  |b Cat Swarm Optimization (CSO)  |b Bacterial Foraging Optimization (BFO) 
700 |9 524572  |a Panda, Ganapati  |e Co-Author 
773 |c 002  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج26, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 026  |x 1319-1578 
700 |9 524571  |a Majhi, Ritanjali  |e Co-Author 
700 |a Majhi, Babita  |e Co-Author  |9 524569 
856 |u 0584-026-001-002.pdf 
930 |d y  |p y 
995 |a science 
999 |c 972997  |d 972997