ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Naive Bayes Classifiers For Authorship Attribution of Arabic Texts

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Altheneyan, Alaa Saleh (Author)
مؤلفين آخرين: Menai, Mohamed El Bachir (Co-Author)
المجلد/العدد: مج26, ع4
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2014
الصفحات: 473 - 484
DOI: 10.33948/0584-026-004-012
ISSN: 1319-1578
رقم MD: 973394
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Authorship Attribution | Arabic Language | Naive Bayes Classifier | Event Model
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02410nam a22002417a 4500
001 1716288
024 |3 10.33948/0584-026-004-012 
041 |a eng 
044 |b السعودية 
100 |9 524827  |a Altheneyan, Alaa Saleh  |e Author 
245 |a Naive Bayes Classifiers For Authorship Attribution of Arabic Texts 
260 |b جامعة الملك سعود  |c 2014 
300 |a 473 - 484 
336 |a بحوث ومقالات  |b Article 
520 |b Authorship attribution is the process of assigning an author to an anonymous text based on writing characteristics. Several authorship attribution methods were developed for natural languages, such as English, Chinese and Dutch. However, the number of related works for Arabic is limited. Naϊve Bayes classifiers have been widely used for various natural language processing tasks. However, there is generally no mention of the event model used, which can have a considerable impact on the performance of the classifier. To the best of our knowledge, naϊve Bayes classifiers have not yet been considered for authorship attribution in Arabic. Therefore, we propose to study their use for this problem, taking into account different event models, namely, simple naϊve Bayes (NB), multinomial naϊve Bayes (MNB), multi-variant Bernoulli naϊve Bayes (MBNB) and multi-variant Poisson naϊve Bayes (MPNB). We evaluate these models’ performances on a large Arabic dataset extracted from books of 10 different authors and compare them with other existing methods. The experimental results show that MBNB provides the best results and could attribute the author of a text with an accuracy of 97.43%. Comparison results with related methods indicate that MBNB and MNB are appropriate for authorship attribution. 
653 |a الخوارزميات  |a نظرية بايز  |a اللغة العربية  |a اللسانيات الحاسوبية 
692 |b Authorship Attribution  |b Arabic Language  |b Naive Bayes Classifier  |b Event Model 
700 |9 524831  |a Menai, Mohamed El Bachir  |e Co-Author 
773 |c 012  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 004  |m مج26, ع4  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 026  |x 1319-1578 
856 |u 0584-026-004-012.pdf 
930 |d y  |p y 
995 |a science 
999 |c 973394  |d 973394 

عناصر مشابهة