ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Esophageal Cancer Prediction Based on Qualitative Features Using Adaptive Fuzzy Reasoning Method

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Hamed, Raed I. (Author)
المجلد/العدد: مج27, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 129 - 139
DOI: 10.33948/0584-027-002-004
ISSN: 1319-1578
رقم MD: 973548
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Esophageal Cancer | Fuzzy Petri Nets | Adaptive Method | Qualitative Features | Risk Degrees
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs), where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN) reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.

ISSN: 1319-1578