ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Development and Performance Evaluation of a Novel Knowledge Guided Artificial Neural Network (KGANN) Model for Exchange Rate Prediction

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Jena, Pradyot Ranjan (Author)
مؤلفين آخرين: Majhi, Ritanjali (Co-Author) , Majhi, Babita (Co-Author)
المجلد/العدد: مج27, ع4
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 450 - 457
DOI: 10.33948/0584-027-004-009
ISSN: 1319-1578
رقم MD: 973750
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Artificial Neural Network | Exchange Rate Forecasting | Functional Link Artificial Neural Network (FLANN) | Knowledge Guided ANN Model
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: This paper presents a new adaptive forecasting model using a knowledge guided artificial neural network (KGANN) structure for efficient prediction of exchange rate. The new structure has two parallel systems. The first system is a least mean square (LMS) trained adaptive linear combiner, whereas the second system employs an adaptive FLANN model to supplement the knowledge base with an objective to improve its performance value. The output of a trained LMS model is added to an adaptive FLANN model to provide a more accurate exchange rate compared to that predicted by either a simple LMS or a FLANN model. This finding has been demonstrated through an exhausting computer simulation study and using real life data. Thus the proposed KGANN is an efficient forecasting model for exchange rate prediction.

ISSN: 1319-1578