ارسل ملاحظاتك

ارسل ملاحظاتك لنا









A Unified Learning Framework for Content Based Medical Image Retrieval Using A Statistical Model

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Seetharaman, K. (Author)
مؤلفين آخرين: Sathiamoorthy, S. (Co-Author)
المجلد/العدد: مج28, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2016
الصفحات: 110 - 124
DOI: 10.33948/0584-028-001-009
ISSN: 1319-1578
رقم MD: 973817
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Full Range Autoregressive Model | Bayesian Approach | Color Autocorrelogram | Edge Orientation Autocorrelogram | Micro Textures | Relevance Feedback
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02341nam a22002417a 4500
001 1716680
024 |3 10.33948/0584-028-001-009 
041 |a eng 
044 |b السعودية 
100 |9 525112  |a Seetharaman, K.  |e Author 
245 |a A Unified Learning Framework for Content Based Medical Image Retrieval Using A Statistical Model 
260 |b جامعة الملك سعود  |c 2016 
300 |a 110 - 124 
336 |a بحوث ومقالات  |b Article 
520 |b This paper presents a unified learning framework for heterogeneous medical image retrieval based on a Full Range Autoregressive Model (FRAR) with the Bayesian approach (BA). Using the unified framework, the color autocorrelogram, edge orientation autocorrelogram (EOAC) and micro-texture information of medical images are extracted. The EOAC is constructed in HSV color space, to circumvent the loss of edges due to spectral and chromatic variations. The proposed system employed adaptive binary tree based support vector machine (ABTSVM) for efficient and fast classification of medical images in feature vector space. The Manhattan distance measure of order one is used in the proposed system to perform a similarity measure in the classified and indexed feature vector space. The precision and recall (PR) method is used as a measure of performance in the proposed system. Short-term based relevance feedback (RF) mechanism is also adopted to reduce the semantic gap. The Experimental results reveal that the retrieval performance of the proposed system for heterogeneous medical image database is better than the existing systems at low computational and storage cost. 
653 |a استرجاع المعلومات  |a الصور الطبية  |a التصوير الشعاعي 
692 |b Full Range Autoregressive Model  |b Bayesian Approach  |b Color Autocorrelogram  |b Edge Orientation Autocorrelogram  |b Micro Textures  |b Relevance Feedback 
700 |9 525113  |a Sathiamoorthy, S.  |e Co-Author 
773 |c 009  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج28, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 028  |x 1319-1578 
856 |u 0584-028-001-009.pdf 
930 |d y  |p y  |q n 
995 |a science 
999 |c 973817  |d 973817