ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Word Length Algorithm for Language Identification of Under Resourced Languages

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Selamat, Ali (Author)
مؤلفين آخرين: Akosu, Nicholas (Co-Author)
المجلد/العدد: مج28, ع4
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2016
الصفحات: 457 - 469
DOI: 10.33948/0584-028-004-008
ISSN: 1319-1578
رقم MD: 974021
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Language Identification | Under Resourced Languages | Resource Scarce | Digital Divide | Spellchecker Model
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02431nam a22002417a 4500
001 1716848
024 |3 10.33948/0584-028-004-008 
041 |a eng 
044 |b السعودية 
100 |9 524794  |a Selamat, Ali  |e Author 
245 |a Word Length Algorithm for Language Identification of Under Resourced Languages 
260 |b جامعة الملك سعود  |c 2016 
300 |a 457 - 469 
336 |a بحوث ومقالات  |b Article 
520 |b Language identification is widely used in machine learning, text mining, information retrieval, and speech processing. Available techniques for solving the problem of language identification do require large amount of training text that are not available for under-resourced languages which form the bulk of the World’s languages. The primary objective of this study is to propose a lexicon based algorithm which is able to perform language identification using minimal training data. Because language identification is often the first step in many natural language processing tasks, it is necessary to explore techniques that will perform language identification in the shortest possible time. Hence, the second objective of this research is to study the effect of the proposed algorithm on the run time performance of language identification. Precision, recall, and F1 measures were used to determine the effectiveness of the proposed word length algorithm using datasets drawn from the Universal Declaration of Human Rights Act in 15 languages. The experimental results show good accuracy on language identification at the document level and at the sentence level based on the available dataset. The improved algorithm also showed significant improvement in run time performance compared with the spelling checker approach. 
653 |a علوم الحاسوب  |a الخوارزميات  |a اللسانيات الحاسوبية 
692 |b Language Identification  |b Under Resourced Languages  |b Resource Scarce  |b Digital Divide  |b Spellchecker Model 
700 |9 525261  |a Akosu, Nicholas  |e Co-Author 
773 |c 008  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 004  |m مج28, ع4  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 028  |x 1319-1578 
856 |u 0584-028-004-008.pdf 
930 |d y  |p y  |q n 
995 |a science 
999 |c 974021  |d 974021 

عناصر مشابهة