ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Detection And Visualization Of Non-Linear Structures In Large Datasets Using Exploratory Projection Pursuit Laboratory (EPP-Lab) Software

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Marie-Sainte, Souad Larabi (Author)
المجلد/العدد: مج29, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2017
الصفحات: 2 - 18
DOI: 10.33948/0584-029-001-001
ISSN: 1319-1578
رقم MD: 974030
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Exploratory Projection Pursuit | Genetic Algorithm | Particle Swarm Optimization | Tribes | Clustering | Outliers
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: This article consists of using biologically inspired algorithms in order to detect potentially interesting structures in large and multidimensional data sets. Data exploration and the detection of interesting structures are based on the use of Projection Pursuit that involves the definition and the optimization of an index associated with each direction or projection. The optimization of a projection index should provide a set of multiple optima that is expected to correspond to interesting graphical representations in low dimensional space. The implementation of the bio-inspired algorithms along with the projection pursuit develops a new software called EPP-Lab. Projection pursuit is widely used in different scientific domains (biology, pharmacy, bioinformatics, biometry, etc.) but not widely present in the well-known software's. EPP-Lab is dedicated to recognize and visualize clusters and outlying observations on one dimension from high dimensional and multivariate data sets. It includes different statistical techniques for results analysis. It provides several features and gives the user the option to adjust the parameters of the selected bio-inspired methods or to use defaults values. EPP-Lab is a unique software for detection, visualization and analysis of non-linear structures. The performance of this tool has been validated by testing different real and simulated data sets.

ISSN: 1319-1578

عناصر مشابهة