ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Fuzzy Inferencing To Identify Degree Of Interaction In The Development Of Fault Prediction Models

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Goyal, Rinkaj (Author)
مؤلفين آخرين: Chandra, Pravin (Co-Author) , Singh, Yogesh (Co-Author)
المجلد/العدد: مج29, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2017
الصفحات: 93 - 102
DOI: 10.33948/0584-029-001-008
ISSN: 1319-1578
رقم MD: 974057
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Software Fault Prediction | Fuzzy Inference System | Influential Metrics | Object Oriented Metrics
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02446nam a22002537a 4500
001 1716887
024 |3 10.33948/0584-029-001-008 
041 |a eng 
044 |b السعودية 
100 |9 525301  |a Goyal, Rinkaj  |e Author 
245 |a Fuzzy Inferencing To Identify Degree Of Interaction In The Development Of Fault Prediction Models 
260 |b جامعة الملك سعود  |c 2017 
300 |a 93 - 102 
336 |a بحوث ومقالات  |b Article 
520 |b The software fault prediction models, based on different modeling techniques have been extensively researched to improve software quality for the last three decades. Out of the analytical techniques used by the researchers, fuzzy modeling and its variants are bringing out a major share of the attention of research communities. In this work, we demonstrate the models developed through data driven fuzzy inference system. A comprehensive set of rules induced by such an inference system, followed by a simplification process provides deeper insight into the linguistically identified level of interaction. This work makes use of a publicly available data repository for four software modules, advocating the consideration of compound effects in the model development, especially in the area of software measurement. One related objective is the identification of influential metrics in the development of fault pre- diction models. A fuzzy rule intrinsically represents a form of interaction between fuzzified inputs. Analysis of these rules establishes that Low and NOT (High) level of inheritance based metrics significantly contributes to the F-measure estimate of the model. Further, the Lack of Cohesion of Methods (LCOM) metric was found insignificant in this empirical study. 
653 |a تكنولوجيا الملعومات  |a علوم الحاسوب  |a البرمجيات 
692 |b Software Fault Prediction  |b Fuzzy Inference System  |b Influential Metrics  |b Object Oriented Metrics 
700 |9 525302  |a Chandra, Pravin  |e Co-Author 
700 |9 525303  |a Singh, Yogesh  |e Co-Author 
773 |c 008  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج29, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 029  |x 1319-1578 
856 |u 0584-029-001-008.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974057  |d 974057 

عناصر مشابهة