ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Arabic Medical Entity Tagging Using Distant Learning In A Multilingual Framework

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Cotik, Viviana (Author)
مؤلفين آخرين: Rodriguez, Horacio (Co-Author) , Vivaldi, Jorge (Co-Author)
المجلد/العدد: مج29, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2017
الصفحات: 204 - 211
DOI: 10.33948/0584-029-002-009
ISSN: 1319-1578
رقم MD: 974125
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Semantic Tagging | Multilingual | Medical Domain | Arabic Natural Language Processing
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: A semantic tagger aiming to detect relevant entities in Arabic medical documents and tagging them with their appropriate semantic class is presented. The system takes profit of a Multilingual Framework covering four languages (Arabic, English, French, and Spanish), in a way that resources available for each language can be used to improve the results of the others, this is specially important for less resourced languages as Arabic. The approach has been evaluated against Wikipedia pages of the four languages belonging to the medical domain. The core of the system is the definition of a base tagset consisting of the three most represented classes in SNOMED-CT taxonomy and the learning of a binary classifier for each semantic category in the tagset and each language, using a distant learning approach over three widely used knowledge resources, namely Wikipedia, Dbpedia, and SNOMED-CT.

ISSN: 1319-1578

عناصر مشابهة