LEADER |
01835nam a22002417a 4500 |
001 |
1717090 |
024 |
|
|
|3 10.33948/0584-030-001-001
|
041 |
|
|
|a eng
|
044 |
|
|
|b السعودية
|
100 |
|
|
|9 525507
|a Kaur, Arvinder
|e Author
|
245 |
|
|
|a An Empirical Evaluation Of Classification Algorithms For Fault Prediction In Open Source Projects
|
260 |
|
|
|b جامعة الملك سعود
|c 2018
|
300 |
|
|
|a 2 - 17
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b Creating software with high quality has become difficult these days with the fact that size and complexity of the developed software is high. Predicting the quality of software in early phases helps to reduce testing resources. Various statistical and machine learning techniques are used for prediction of the quality of the software. In this paper, six machine-learning models have been used for software quality prediction on five open source software. Varieties of metrics have been evaluated for the software including C & K, Henderson & Sellers, McCabe etc. Results show that Random Forest and Bagging produce good results while Naı¨ ve Bayes is least preferable for prediction.
|
653 |
|
|
|a البرامج التعليمية
|a التعليم الإلكتروني
|a الخوارزميات
|a البرمجيات
|
692 |
|
|
|b Metrics
|b Fault Prediction
|b Receiver Operating Charac Teristics Analysis
|b Machine Learning
|b Nimenyi Test
|
700 |
|
|
|9 525509
|a Kaur, Inderpreet
|e Co-Author
|
773 |
|
|
|c 001
|e Journal of King Saud University (Computer and Information Sciences)
|f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat
|l 001
|m مج30, ع1
|o 0584
|s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
|v 030
|x 1319-1578
|
856 |
|
|
|u 0584-030-001-001.pdf
|
930 |
|
|
|d y
|p y
|
995 |
|
|
|a science
|
999 |
|
|
|c 974281
|d 974281
|