ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Self Adaptive Dragonfly Based Optimal Thresholding For Multilevel Segmentation Of Digital Images

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Sambandam, Rakoth Kandan (Author)
مؤلفين آخرين: Jayaraman, Sasikala (Co-Author)
المجلد/العدد: مج30, ع4
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2018
الصفحات: 449 - 461
DOI: 10.33948/0584-030-004-002
ISSN: 1319-1578
رقم MD: 974462
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Meta Heuristic Algorithms | Dragonfly Optimization | Multilevel Segmentation
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Dragonfly optimization (DFO) is a population based meta-heuristic optimization algorithm that simulates the static and dynamic swarming behaviors of dragonflies. The static swarm comprising less number of dragonflies in a small area for hunting preys, while the dynamic swarm with a large number of dragonflies migrates over long distances; and they represent the exploration and exploitation phases of the DFO. This paper introduces a self-adaptive scheme for tuning the DFO parameters and suggests a methodology involving self-adaptive DFO (SADFO) for performing multilevel segmentation of digital images. The multilevel segmentation problem is formulated as an optimization problem and solved using the SADFO. The method optimizes the threshold values through effectively exploring the solution space in obtaining the global best solution. The results of real life and medical images illustrate the performance of the suggested method.

ISSN: 1319-1578