ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Bridging The Gap Between The Social And Semantic Web: Extracting Domain Specific Ontology From Folksonomy

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Alruqimi, Mohammed (Author)
مؤلفين آخرين: Aknin, Noura (Co-Author)
المجلد/العدد: مج31, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 15 - 21
DOI: 10.33948/0584-031-001-002
ISSN: 1319-1578
رقم MD: 974525
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02638nam a22002297a 4500
001 1717285
024 |3 10.33948/0584-031-001-002 
041 |a eng 
044 |b السعودية 
100 |9 525729  |a Alruqimi, Mohammed  |e Author 
245 |a Bridging The Gap Between The Social And Semantic Web: Extracting Domain Specific Ontology From Folksonomy 
260 |b جامعة الملك سعود  |c 2019 
300 |a 15 - 21 
336 |a بحوث ومقالات  |b Article 
520 |b Folksonomies have become very popular as means to organize large sets of resources shared over the Social Web. The bottom-up nature of folksonomies has proved to be an interesting alternative to the current effort at semantic web ontologies since folksonomies provide a rich terminology generated by large user-communities. Besides, ontologies extracted from folksonomies can represent the intelligence collective of social communities. Such ontologies also represent a core element of a new feature of the Web, the Internet of Things. Many research studies have captured semantics in folksonomies, some of which have developed ontologies from folksonomy. However, the formal specific-domain ontology consisting of domain dependent relations has not been researched yet. This paper introduces an algorithm for deriving a domain-specific ontology from folksonomy tags. The proposed algorithm starts by collecting a domain specific terminology; next, discovering a pre-defined set of conceptual relationships among the domain terminologies. The evaluation of the algorithm, using a dataset extracted from BibSonomy, demonstrated that the algorithm could effectively learn domain ontologies consisting of domain concepts linked by meaningful and high accurate relationships. Furthermore, the proposed algorithm can help reduce common issues related to tag ambiguity and synonymous tags. © 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
653 |a تكنولوجيا المعلومات  |a الشبكات الاجتماعية  |a الخوارزميات  |a علم الاقتصاد 
700 |9 525731  |a Aknin, Noura  |e Co-Author 
773 |c 002  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج31, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 031  |x 1319-1578 
856 |u 0584-031-001-002.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974525  |d 974525 

عناصر مشابهة