ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Swarm Intelligence Based Approach For Educational Data Classification

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Yahya, Anwar Ali (Author)
المجلد/العدد: مج31, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 35 - 51
DOI: 10.33948/0584-031-001-004
ISSN: 1319-1578
رقم MD: 974537
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Particle Swarm Classification | Rocchio Algorithm | Educational Data Mining | Questions Classification | Bloom’s Taxonomy
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02809nam a22002297a 4500
001 1717298
024 |3 10.33948/0584-031-001-004 
041 |a eng 
044 |b السعودية 
100 |a Yahya, Anwar Ali  |e Author  |9 426180 
245 |a Swarm Intelligence Based Approach For Educational Data Classification 
260 |b جامعة الملك سعود  |c 2019 
300 |a 35 - 51 
336 |a بحوث ومقالات  |b Article 
520 |b This paper explores the effectiveness of Particle Swarm Classification (PSC) for a classification task in the field of educational data mining. More specifically, it proposes PSC to design a classification model capable of classifying questions into the six cognitive levels of Bloom’s taxonomy. To this end, this paper proposes a novel specialized initialization mechanism based on Rocchio Algorithm (RA) to mitigate the adverse effects of the curse of dimensionality on the PSC performance. Furthermore, in the design of the RA-based PSC model of questions classification, several feature selection approaches are investigated. In doing so, a dataset of teachers’ classroom questions was collected, annotated manually with Bloom’s cognitive levels, and transformed into a vector space representation. Using this dataset, several experiments are conducted, and the results show a poor performance of the standard PSC due to the curse of dimensionality. However, when the proposed RA-based initialization mechanism is used, a significant improvement in the average performance, from 0.243 to 0.663, is obtained. In addition, the results indicate that the feature selection approaches play a role in the performance of the RA-based PSC (average performance ranges from 0.535 to 0.708). Finally, a comparison between the performance of RA-based PSC (average performance = 0.663) and seven machine learning approaches (best average performance = 0.646) confirms the effectiveness of the proposed RA-based PSC approach. © 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
653 |a الخوارزميات  |a خوارزمية روشيو  |a تصنيف بلوم  |a التعلم الإلكتروني 
692 |b Particle Swarm Classification  |b Rocchio Algorithm  |b Educational Data Mining  |b Questions Classification  |b Bloom’s Taxonomy 
773 |c 004  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج31, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 031  |x 1319-1578 
856 |u 0584-031-001-004.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974537  |d 974537 

عناصر مشابهة