ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Syntactic Parsing And Supervised Analysis Of Sindhi Text

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Dootio, Mazhar Ali (Author)
مؤلفين آخرين: Wagan, Asim Imdad (Co-Author)
المجلد/العدد: مج31, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 105 - 112
DOI: 10.33948/0584-031-001-010
ISSN: 1319-1578
رقم MD: 974582
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Sindhi Parser | Sindhi Wordnet | NLP | Tokenization | Machine Learning | Supervised Model
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02753nam a22002417a 4500
001 1717322
024 |3 10.33948/0584-031-001-010 
041 |a eng 
044 |b السعودية 
100 |9 525781  |a Dootio, Mazhar Ali  |e Author 
245 |a Syntactic Parsing And Supervised Analysis Of Sindhi Text 
260 |b جامعة الملك سعود  |c 2019 
300 |a 105 - 112 
336 |a بحوث ومقالات  |b Article 
520 |b  This research study addresses the morphological and syntactic problems of Sindhi language text by proposing an Algorithm for tokenization and syntactic parsing. A Sindhi parser is developed on basis of proposed algorithm to perform syntactic parsing on Sindhi text using Sindhi WordNet (SWN) and corpus. Results of Sindhi syntactic parsing are accumulated to develop multi-class and multi-feature based Sindhi dataset in CSV format. Three attributes of Sindhi dataset are labelled as class. All three classes are comprised with different number of categories. SVM, Random forest and K-NN supervised machine learning methods are used and trained to analyze and evaluate the Sindhi dataset. 80% of dataset is used as training set and 20% of dataset is used as test set. In this research study, 10-fold cross validation technique is applied to evaluate and validate the supervised machine learning process. The SVM classifier gives better results on class phrase and UPOS whereas Random forest gives better result on class TagStatus. Precision, recall, f-measure and confusion matrix approve the performance of all supervised classifiers. The better performance of supervised machine learning methods, support the Sindhi dataset and Sindhi online parser for future research. This study opens new doors for research on right hand written languages especially Sindhi language to solve its computational linguistics problems. © 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
653 |a البرمجة اللغوية العصبية  |a التعلم الإلكتروني  |a الخوارزميات  |a اللسانيات الحاسوبية 
692 |b Sindhi Parser  |b Sindhi Wordnet  |b NLP  |b Tokenization  |b Machine Learning  |b Supervised Model 
700 |9 525782  |a Wagan, Asim Imdad  |e Co-Author 
773 |c 010  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج31, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 031  |x 1319-1578 
856 |u 0584-031-001-010.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974582  |d 974582 

عناصر مشابهة