ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Hybrid Bayesian Network And Tensor Factorization Approach For Missing Value Imputation To Improve Breast Cancer Recurrence Prediction

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Vazifehdan, Mahin (Author)
مؤلفين آخرين: Moattar, Mohammad Hossein (Co-Author) , Jalali, Mehrdad (Co-Author)
المجلد/العدد: مج31, ع2
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 175 - 184
DOI: 10.33948/0584-031-002-004
ISSN: 1319-1578
رقم MD: 974600
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Breast Cancer Recurrence | Missing Value Imputation | Classification | Tensor Factorization | Bayesian Network
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02772nam a22002537a 4500
001 1717336
024 |3 10.33948/0584-031-002-004 
041 |a eng 
044 |b السعودية 
100 |9 525796  |a Vazifehdan, Mahin  |e Author 
245 |a A Hybrid Bayesian Network And Tensor Factorization Approach For Missing Value Imputation To Improve Breast Cancer Recurrence Prediction 
260 |b جامعة الملك سعود  |c 2019 
300 |a 175 - 184 
336 |a بحوث ومقالات  |b Article 
520 |b Data mining and machine learning approaches can be used to predict breast cancer recurrence. However, real datasets often include missing values for various reasons. In this paper, a hybrid imputation method is proposed with respect to the dependency between the attributes and the type of incomplete attributes in order to especially improve the prediction of breast cancer recurrence. After splitting the dataset into two discrete and numerical subsets, first missing values of the discrete fields are imputed using Bayesian network. Then, using Tensor factorization, the integrated dataset, which comprises of the filled-subset of the previous stage and numerical missing values subset, is constructed so that both continuous missing values are imputed and the accuracy of imputation is enhanced. We evaluated the proposed method versus six imputation methods i.e. mean, Hot-deck, K-NN, Weighted K-NN, Tensor factorization and Bayesian network on three datasets and used three classifiers, namely decision tree, K-Nearest Neighbor and Support Vector Machine for recurrence prediction. Experimental results show that the proposed method has as average 0.26 prediction improvement. Also, the prediction performance of the proposed approach outperforms all other imputation-classifier pairs in terms of specificity, sensitivity and accuracy. © 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
653 |a تشخيص الأمراض  |a سرطان الثدي  |a المعلومات الطبية 
692 |b Breast Cancer Recurrence  |b Missing Value Imputation  |b Classification  |b Tensor Factorization  |b Bayesian Network 
700 |9 525797  |a Moattar, Mohammad Hossein  |e Co-Author 
700 |9 525798  |a Jalali, Mehrdad  |e Co-Author 
773 |c 004  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 002  |m مج31, ع2  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 031  |x 1319-1578 
856 |u 0584-031-002-004.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974600  |d 974600 

عناصر مشابهة