ارسل ملاحظاتك

ارسل ملاحظاتك لنا









يجب تسجيل الدخول أولا

A Fuzzy Image Clustering Method Based On An Improved Backtracking Search Optimization Algorithm With An Inertia Weight Parameter

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Toz, Guliz (Author)
مؤلفين آخرين: Yucedag, Ibrahim (Co-Author) , Erdogmus, Pakize (Co-Author)
المجلد/العدد: مج31, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 295 - 303
DOI: 10.33948/0584-031-003-003
ISSN: 1319-1578
رقم MD: 974657
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
BSA | FCM | Image Clustering
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: In this paper, we introduced a novel image clustering method based on combination of the classical Fuzzy C-Means (FCM) algorithm and Backtracking Search optimization Algorithm (BSA). The image clustering was achieved by minimizing the objective function of FCM with BSA. In order to improve the local search ability of the new algorithm, an inertia weight parameter (w) was proposed for BSA. The improvement was accomplished by using w in the steps of the determination of the search-direction matrix of BSA and the new algorithm was named as w-BSAFCM. In order to show the effectiveness of the new algorithm, FCM was also combined with the general forms of BSA in the same manner and three benchmark images were clustered by utilizing these algorithms. The obtained results were analyzed according to the objective function and Davies-Bouldin index values to compare the performances of the algorithms. According to the results, it was shown that w-BSAFCM can be effectively be used for solving image clustering problem. © 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ISSN: 1319-1578